Rational Approximations Corresponding to Newton Series (Newton-Padé Approximants)

Michael A. Gallucci
NOAA Environmental Research Laboratories, Space Environment Laboratory, Boulder, Colorado 80302

AND

William B. Jones*

University of Colorado, Boulder, Colorado 80302
Communicated by Oved Shisha
Received December 23, 1974

1. Introduction

A rational function is said to be of type $[m, n]$ if it can be written in the form

$$
\left(s_{0}+s_{1} z+\cdots+s_{n} z^{n}\right) /\left(t_{0}+t_{1} z+\cdots+t_{m} z^{m}\right), \quad \sum\left|t_{k}\right| \neq 0 .
$$

Corresponding to a given power series

$$
\begin{equation*}
P(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \quad\left(a_{0} \neq 0\right) \tag{1.1}
\end{equation*}
$$

and nonnegative integers m and n, there exists a unique rational function

$$
\begin{equation*}
r_{m, n}(z)=\left(u_{m, n}(z) / v_{m, n}(z)\right) \tag{1.2}
\end{equation*}
$$

of type $[m, n]$ satisfying a formal identity

$$
\begin{equation*}
P(z) v_{m, n}(z)-u_{m, n}(z)=A_{m+n+1} z^{m+n+1}+A_{m+n+2} z^{m+n+2}+\cdots \tag{1.3}
\end{equation*}
$$

[^0]where the A_{k} are complex constants (possibly zero). The function $r_{m, n}(z)$ is called the $[m, n]$ Padé approximant of $P(z)$ and the double infinite array
\[

$$
\begin{array}{cccc}
r_{0,0} & r_{0.1} & r_{0,2} & \cdots \tag{1.4}\\
r_{1,0} & r_{1,1} & r_{1,2} & \cdots \\
r_{2,0} & r_{2,1} & r_{2,2} & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}
$$
\]

is called the Padé table of $P(z)[4,14,17]$. In recent years many applications of Padé approximants have been found in theoretical physics, chemistry, and engineering (see, for example, $[1,2,5,6,11]$).

Formal Newton series

$$
\begin{equation*}
f(z)=a_{0}+\sum_{k=1}^{\infty} a_{k}\left[\prod_{j=1}^{k}\left(z-\beta_{j}\right)\right] \tag{1.5}
\end{equation*}
$$

provide a simple generalization of power series. Their partial sums are sometimes used to represent interpolation polynomials with interpolation points $\left\{\beta_{j}\right\}$; the coefficients a_{k} are then divided differences [7]. In Section 2.2 it is shown that there exists a unique rational function $R_{m, n}(f, z)$ corresponding to (1.5) in a manner completely analogous to the correspondence of the $[m, n]$ Pade approximant (1.2) to the power series (1.1). Thus the function $R_{m, n}(f, z)$ is a natural generalization of the Padé approximant $r_{m, n}(z)$ and is referred to herein as the $[m, n]$ Newton-Padé approximant (Section 2.2). Newton-Padé approximants have recently been studied by Saff [15], Karlsson [12], and Warner [21, 22].
The purpose of the present paper is to develop some additional basic properties of these rational approximants. The concept of normality is defined in Section 3 and necessary and sufficient conditions for normality are given in Theorem 3. In Section 4 we investigate the continuity of an $[m, n]$ NewtonPadé approximant $R_{m, n}(f, z)$, considered as a function of its Newton coefflcients $a_{0}, a_{1}, \ldots, a_{m+n}$ and interpolation points $\beta_{1}, \beta_{2}, \ldots, \beta_{m+n+1}$. The continuity results (given in Theorems 8 and 9) are in the same spirit as the following theorem of Walsh [19]: For a given power series (1.1) let $r_{m, n}(\epsilon, z)$ denote the rational function of type $[m, n]$ of best approximation to $f(z)$ on the disk $\{z:|z| \leqslant \epsilon\}$ in the sense of Tchebycheff (uniform norm). If the determinant

$$
\left|\begin{array}{cccc}
a_{n} & a_{n-1} & \cdots & a_{n-m+1} \\
a_{n+1} & a_{n} & \cdots & a_{n-m+2} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n+m-1} & a_{n+m} & \cdots & a_{n}
\end{array}\right|
$$

does not vanish, then as \in approaches zero, $r_{m, n}(\epsilon, z)$ converges to the $[m, n]$

Padé approximant $r_{m, n}(z)$ of (1.1), uniformly on compact sets containing no poles of $r_{m, n}(z)$. Other results of this type have recently been given by Walsh [20] and Karlsson [12]. In Section 5 we prove two convergence theorems for Newton-Padé approximants. The first of these (Theorem 10) gives necessary and sufficient conditions for uniform convergence of certain sequences of Newton-Padé approximants. The second (Theorem 12) gives sufficient conditions to ensure that if a sequence of Newton-Padé approximants converges uniformly, then its limit will be equal to the expanded function. These theorems are analogs to results given by [10] for Padé approximants; but it is shown by means of an example (preceding Theorem 10) that complete analogs cannot be found. Other illustrative examples are given in Sections 3 and 4. In Section 1.1 we develop certain algebraic operations for formal Newton series and a brief summary of facts about Newton series expansions of analytic functions is given in Section 4.1.

The following notations are used in this paper: if f is a function defined on a set K then $\|f\|_{K}=\sup \{|f(z)|: z \in K\}$. We call a simple, closed, rectifiable, positively oriented curve a "scroc."

2. Newton-Padé Table

2.1. Formal Newton Series

Defintion 1. A formal Newton series (FNS) is an ordered triple $\left[\left\{a_{n}\right\}_{0}^{\infty},\left\{\beta_{n}\right\}_{0}^{\infty},\left\{f_{n}\right\}_{0}^{\infty}\right]$, where $a_{0}, a_{1}, a_{2}, \ldots$ and $\beta_{1}, \beta_{2}, \beta_{3}, \ldots$ are complex numbers (not necessarily distinct) and for each $n=0,1,2, \ldots, f_{n}$ is the polynomial

$$
\begin{equation*}
f_{n}(z)=\sum_{k=0}^{n} a_{k} \omega_{k}(z) \tag{2.1a}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0}(z)=1 ; \quad \omega_{k}(z)=\prod_{j=1}^{k}\left(z-\beta_{j}\right), \quad k=1,2,3, \ldots \tag{2.1b}
\end{equation*}
$$

and where z is a complex variable. The a_{n}, β_{n}, and f_{n} are called, respectively, the nth Newton coefficient, interpolation point, and partial sum of [$\left.\left\{a_{n}\right\},\left\{\beta_{n}\right\},\left\{f_{n}\right\}\right]$ and a FNS is said to converge at z if the sequence of partial sums $\left\{f_{n}(z)\right\}$ is convergent. When convergent, the $\operatorname{limit} \lim f_{n}(z)$ is called the value of the FNS at z. For convenience (when there is no danger of confusion) we may use the symbols f and

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} \omega_{n}(z) \tag{2.2}
\end{equation*}
$$

to represent the FNS $\left[\left\{a_{n}\right\},\left\{\beta_{n}\right\},\left\{f_{n}\right\}\right]$. As in many other similar situations in analysis, the symbols (2.2) are used to denote both the infinite process and the value of its limit, when it exists.

Remark. We note that a complex constant ε and the polynomial $z \equiv \beta_{1} \omega_{0}(z)+\left(z-\beta_{1}\right)$ are (finite) formal Newton series. Some arithmetic operations for formal Newton series are given by the following:

DEFINITION 2. Let $f(z)=\sum_{k=0}^{\infty} a_{k} \omega_{k}(z)$ and $g(z)=\sum_{k=0}^{\infty} c_{k} \omega_{k}(z)$ be FNS with interpolation points $\left\{\beta_{i}\right\}$ and let c be a complex number. We define:
(a) $(f+g)(z)=\sum_{k=0}^{\infty}\left(a_{k}+c_{k}\right) \omega_{k}(z)$,
(b) $(c \cdot f)(z)=\sum_{k=0}^{\infty}\left(c \cdot a_{k}\right) \omega_{k}(z)$,
(c) $(z \cdot f)(z)=a_{0} \beta_{1} \omega_{0}(z)+\sum_{k=1}^{\infty}\left(a_{k-1}+a_{k} \beta_{k+1}\right) \omega_{k}(z)$,
(d) If $c \neq \beta_{i}, i=1,2,3, \ldots$, then $f(z) /(c-z)=\sum_{k=0}^{\infty} b_{k} \omega_{k}(z)$,
where

$$
\begin{equation*}
b_{0}=a_{0} /\left(\beta_{1}-c\right) ; b_{k}=\left(a_{k}-b_{k-1}\right) /\left(\beta_{k+1}-c\right) . \quad k=1,2,3, \ldots \tag{2.3}
\end{equation*}
$$

Remarks. It is easily verified that if $h(z)=\sum_{k=0}^{\infty} b_{k} \omega_{k}(z)$ is a FNS given as in Definition 2d, and $(z-c) h(z)$ is the FNS determined by Definition 2a,b,c, then

$$
f(z)=(z-c) h(z)
$$

Every FNS (2.2) determines a function f defined at the points of convergence of the partial sums (2.1a). Clearly, (2.2) always converges (at least) at the points $\beta_{1}, \beta_{2}, \beta_{3}, \ldots$. Conversely, in Section 4 it will be seen that under certain conditions a function f will determine a FNS expansion with a given sequence of interpolation points $\left\{\beta_{i}\right\}$.

If $a_{k}=0$ for $k \geqslant n+1$, then (2.3) is a finite (or terminating) FNS and defines a polynomial in z of degree not greater than n. Conversely, as an immediate consequence of Definition 2, every polynomial of degree n determines a unique (finite) FNS with the given sequence of interpolation points $\left\{\beta_{2}\right\}$. From Definition 2 it is also clear that the product (multiplication) of a FNS by a polynomial is a well-defined FNS (with the same sequence of interpolation points); the quotient (division) of a FNS by a polynomial is a well-defined FNS (with the same sequence of interpolation points) provided the (divisor) polynomial does not vanish at any of the interpolation points. The following theorem provides further useful information concerning multiplication of a FNS by polynomials.

Theorem 1. Let $f(z)=\sum_{k=0}^{\infty} a_{k} \omega_{k}(z)$ be a FNS with interpolation points $\left\{\beta_{n}\right\}$. If m, ν and μ are positive integers, let $K_{\nu, \mu}^{(m)}$ denote the sum of all products consisting of m factors of the β_{i} 's with $\nu-\mu+1 \leqslant i \leqslant \nu$ ($K_{\nu, \mu}^{(m)}=0$, if $m<0$ or if $\mu<1 ; K_{\nu, \mu}^{(0)}=1$ if $\mu \geqslant 1$). Then:
(A) For $p=1,2,3, \ldots$,

$$
\begin{equation*}
z^{p} f(z)=\sum_{k=0}^{\infty} A_{k, p} \omega_{k}(z) \tag{2.4a}
\end{equation*}
$$

where (setting $a_{i}=0$ for $i<0$)

$$
\begin{equation*}
A_{k, p}=\sum_{j=0}^{p} a_{k-j} K_{k+1, j+1}^{(p-j)} \tag{2.4b}
\end{equation*}
$$

(B) If $v(z)=d_{0}+d_{1} z+\cdots+d_{m} z^{m}, m \geqslant 0$, then

$$
\begin{equation*}
v(z) f(z)=\sum_{k=0}^{\infty} b_{k_{k}} \omega_{k_{k}}(z) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}=\sum_{j=0}^{m} d_{j} A_{k, j} \tag{2.6}
\end{equation*}
$$

(C) In particular, with the notation of (B),

$$
v(z) f(z)=\sum_{k=n+m+1}^{\infty} b_{k} \omega_{k c}(z)
$$

if $a_{i}=0$ for $i=0,1, \ldots, n+m$.
(D) If $c \neq \beta_{i}$ for $i=1,2,3, \ldots$, and $a_{k}=0$ for $k=0,1, \ldots, n+m$, then

$$
f(z) /(z-c)=\sum_{k=m+n+1}^{\infty} b_{k} \omega_{k}(z)
$$

where the coefficients $b_{l b}$ are defined by (2.3).
Proof. It can be verified directly from the definition of the $K_{\nu, \mu}^{(m)}$, that

$$
\begin{equation*}
K_{k, j}^{(p-j)}+\beta_{k+1} K_{k+1, j+1}^{(p-1-j)}=K_{k+1, j+1}^{(p-j)}, \quad j=0,1, \ldots, p ; p=1,2,3, \ldots \tag{2.7}
\end{equation*}
$$

The proof of (A) is by an induction on p. The case $p=1$ follows immediately from Definition 2c. Now assume that (2.4) is true for $1 \leqslant p<n$. Then

$$
\begin{aligned}
z^{n} f(z) & =z\left(z^{n-1} f(z)\right)=z \sum_{k=0}^{\infty} A_{k, n-1} \omega_{k}(z), \quad \text { (by induction hypothesis) } \\
& =A_{0, n-1} \beta_{1} \omega_{0}(z)+\sum_{k=1}^{\infty}\left(A_{k-1, n-1}+\beta_{k+1} A_{k, n-1}\right) \omega_{k}(z), \\
& =\sum_{k=0}^{\infty} A_{k, n} \omega_{k}(z)
\end{aligned}
$$

where the $A_{k . n}$ satisfy (2.4 b), since

$$
A_{0, n}=A_{0, n-1} \beta_{1}=\left(a_{0} K_{1,1}^{(n-1)}\right) \beta_{1}=a_{0} K_{1,1}^{(n)}
$$

and, for $k=1,2,3, \ldots$,

$$
\begin{aligned}
A_{k, n} & =A_{k-1, n-1}+A_{k, n-1} \beta_{k+1} \\
& =\sum_{j=0}^{n-1} a_{k-1-j} K_{k, j+1}^{(n-1-j)}+\beta_{k+1} \sum_{j=0}^{n-1} a_{k-j} K_{k+1, j+1}^{(n-1-j)} \quad \text { (by induction hypothesis) } \\
& =\sum_{j=0}^{n} a_{k-j}\left(K_{k+j, 1}^{(n-j)}+\beta_{k+1} K_{k+1, j+1}^{(n-1-j)}\right) \\
& \left.=\sum_{j=0}^{n} a_{k-j} K_{k+1, j+1}^{(n-j)} \quad(\text { by } 2.7)\right) .
\end{aligned}
$$

Part (B) is an immediate consequence of (2.4). Part (C) follows from (2.6) and the fact that $A_{k, j}=0$ provided $a_{i}=0$ for all $i=k, k-1, \ldots, k-j$. Part (D) follows immediately from (2.3) and this completes the proof.

2.2. Newion-Padé Approximants

DEFINITION 3. If $u(z)$ and $v(z)$ are polynomials in $z, v(z)$ not identically zero, then (u, v) is called a rational expression. Two rational expressions (u, v) and $\left(u^{*}, v^{*}\right)$ are said to be equivalent, denoted by $(u, v) \sim\left(u^{*}, v^{*}\right)$, iff

$$
\begin{equation*}
u(z) v^{*}(z) \equiv u^{*}(z) v(z) \tag{2.8}
\end{equation*}
$$

they are called equal, denoted by $(u, v)=\left(u^{*}, v^{*}\right)$, iff there exists a nonzero complex number a such that

$$
\begin{equation*}
a \cdot u(z) \equiv u^{*}(z), \quad a \cdot v(z) \equiv v^{*}(z) \tag{2.9}
\end{equation*}
$$

A rational expression (u, v) is said to be of type [m, n] iff the degree of u is at most n and the degree of v is at most m.

Remarks. Equivalence and equality of rational expressions are both equivalence relations. If two rational expressions are equal, then they are equivalent, but not conversely. The equivalence class of all rational expressions equivalent to a given rational expression (u, v) determines a unique rational function R, represented by

$$
R(z)=p(z) / q(z)
$$

where (p, q) is the rational expression (uniquely determined up to equality) such that $(p, q) \sim(u, v)$ and p and q are relatively prime polynomials.

Theorem 2. Let $f(z)=\sum_{k=0}^{\infty} a_{k} \omega_{k}(z)$ be a FNS with interpolation points $\left\{\beta_{i}\right\}$ and let m and n be (fixed) nonnegative integers. Then: (A) If $u(z)=$ $c_{0} \omega_{0}(z)+c_{1} \omega_{1}(z)+\cdots+c_{n} \omega_{n}(z)$ and $v(z)=d_{0}+d_{1} z+\cdots+d_{m} z^{m}$, then a necessary and sufficient condition that the FNS vf $-u$ be of the form

$$
\begin{equation*}
v(z) f(z)-u(z)=b_{n+m+1} \omega_{n+m+1}(z)+b_{n+m+2} \omega_{n+m+2}(z)+\cdots \tag{2.10}
\end{equation*}
$$

is that the coefficients c_{j} and d_{j} satisfy the system of equations

$$
\begin{gather*}
d_{0} A_{0,0}+d_{1} A_{0,1}+\cdots+d_{m} A_{0, m}=c_{0} \\
d_{0} A_{1,0}+d_{1} A_{1,1}+\cdots+d_{m} A_{1, m}=c_{1} \tag{2.11a}\\
\vdots \vdots \vdots \\
\vdots \tag{2.11b}\\
d_{0} A_{n, 0}+d_{1} A_{n, 1}+\cdots+d_{m} A_{n, m}=c_{n} \\
d_{0} A_{n+1.0}+d_{1} A_{n+1.1}+\cdots+d_{m} A_{n+1, m}=0 \\
\vdots \vdots \\
\vdots \\
d_{0} A_{n+m, 0}+d_{1} A_{n+m, 1}+\cdots+d_{m} A_{n+m, m}=0
\end{gather*}
$$

where the $A_{k, p}$ are defined by (2.4b).
(B) There exists a unique (up to equivalence \sim) rational expression (u, v) of type $[m, n]$, such that the FNS $v(z) f(z)-u(z)$ has the form (2.10).

Proof. (A) By Theorem 1, letting $c_{k}=0$ for $k \geqslant n$, we obtain

$$
\begin{equation*}
v(z) f(z)-u(z)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{m} d_{j} A_{k, j}-c_{k}\right) \omega_{k}(z) \tag{2.12}
\end{equation*}
$$

of which (A) is an immediate consequence. To prove (B) we note that (2.11b) is a homogeneous linear system of m equations in $(m+1)$ unknowns. Hence there exist $d_{0}, d_{1}, \ldots, d_{m}$, not all zero, satisfying (2.11b). Having chosen such
d_{i}, we choose the c_{i} to satisfy (2.11a) and the resulting rational expression (u, v) is of type $[m, n]$ and satisfies (2.10). To prove the uniqueness of (u, v), we let $\left(u^{*}, v^{*}\right)$ denote an arbitrary rational expression of type $[m, n]$ such that

$$
\begin{equation*}
v^{*}(z) f(z)-u^{*}(z)=b_{n+m+1}^{*} \omega_{n+m+1}(z)+b_{n+m+2}^{*} \omega_{n+n+2}(z)+\cdots \tag{2.13}
\end{equation*}
$$

By Theorem $1(\mathrm{C}), v\left(v^{*} f-u^{*}\right)$ and $v^{*}(v f-u)$ are both FNS whose first $n+m+1$ coefficients are zero. Hence

$$
\begin{aligned}
& v^{*}(z) u(z)-v(z) u^{*}(z) \\
& \quad=v(z)\left[0^{*}(z) f(z)-u^{*}(z)\right]-v^{*}(z)[v(z) f(z)-u(z)]
\end{aligned}
$$

is also a FNS whose first $n+m+1$ coefficients vanish. But $\varepsilon^{*} u-v u^{*}$ is a polynomial of degree at most $n+m$ and therefore must be identically zero. Thus $\left(u^{*}, v^{*}\right) \sim(u, v)$, which completes the proof.

Definition 4. Let $f(z)=\sum_{k=0}^{\infty} a_{k_{k}} \omega_{k}(z)$ be a FNS with interpolation points $\left\{\beta_{i}\right\}$. Corresponding to each ordered pair of nonnegative integers (m, n), Theorem 1 asserts the existence of a unique rational function

$$
\begin{equation*}
R_{m, n}(f, z)=P_{m, n}(f, z) / Q_{m, n}(f, z), \tag{2.14}
\end{equation*}
$$

such that ($P_{m, n}, Q_{m, n}$) is a rational expression equivalent to a rational expression (u, v) of type $[m, n]$ satisfying $(2.10) . R_{m, n}(f, z)$ is called the $[m, n]$ Newton-Padé approximant of $f(z)$. The doubly infinite array

$$
\begin{array}{cccc}
R_{0,0}(f, z) & R_{0,1}(f, z) & R_{0,2}(f, z) & \ldots \tag{2.15}\\
R_{1,0}(f, z) & R_{1,1}(f, z) & R_{1,2}(f, z) & \ldots \\
R_{2,0}(f, z) & R_{2,1}(f, z) & R_{2,2}(f, z) & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}
$$

is called the Newton-Pade table of $f(z)$.
Remark. It is easily seen that in the special case when all β_{2} are zero, the FNS $f(z)=\sum a_{k} \omega_{k}(z)$ reduces to a formal power series $\sum a_{k} z^{k}$ and the Newton-Padé approximant $R_{m, n}(f, z)$ becomes the $[m, n]$ Padé approximant of $f(z)$. Thus $R_{m, n}(f, z)$ is a generalization of the [m, n] Padé approximant, corresponding to (the more general) formal Newton series. This accounts for our use of the term Newton-Padé approximant.

Let $f(z)=\sum a_{k} \omega_{k}(z)$ be a FNS with interpolation points $\left\{\beta_{i}\right\}$. Let (u, v) be the unique (up to equivalence \sim) rational expression of type $[m, n]$ such that the FNS $v(z) f(z)-u(z)$ has the form (2.10). If $v\left(\beta_{z}\right)=0$ for some i such that $1 \leqslant i \leqslant m+n+1$, then $($ by $(2.10)) u\left(\beta_{i}\right)=n\left(\beta_{i}\right)=0$. Moreover.
if $R_{m, n}\left(f, \beta_{i}\right) \neq f\left(\beta_{i}\right)$, for some i such that $1 \leqslant i \leqslant m+n+1$, then it follows from (2.10) and ($P_{m, n}, Q_{m, n}$) $\sim(u, v)$ (see Definition 4) that $v\left(\beta_{i}\right)=u\left(\beta_{i}\right)=0$.

The $[m, n]$ Newton-Padé approximant $R_{m, n}(f, z)$ may interpolate to $f(z)$ in some, all or none of the points $\beta_{1}, \beta_{2}, \ldots, \beta_{m+n+1}$. In the special case in which these points are all distinct, $R_{m, n}(f, z)$ has the following property: If $R^{*}(z)$ is a rational function of type [m, n] that interpolates to $f(z)$ in at least the same subset of $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m+n+1}\right\}$ as $R_{m, n}(f, z)$, then $R^{*}(z)=R_{m, n}(f, z)$. Hence $R_{m, n}(f, z)$ can be referred to as the best interpolating rational function of $f(z)$. When the β_{i} are not all distinct, the question of interpolation of $f(z)$ by $R_{m, n}(f, z)$ becomes much more complicated (see, for example, [13]) and will not be further dealt with here.

3. Normality

DEFINITION 5. Let $f(z)=\sum_{0}^{\infty} a_{k} \omega_{k c}(z)$ be a FNS with interpolation points $\left\{\beta_{i}\right\}$ and let m and n be nonnegative integers. Then the $[m, n]$ NewtonPadé approximant of f

$$
\begin{equation*}
R_{m, n}(f, z)=\left(P_{m, n}(f, z) / Q_{m, n}(f, z)\right) \quad\left(P_{m, n} \text { and } Q_{m, n} \text { relatively prime }\right) \tag{3.1}
\end{equation*}
$$

is said to be normal if:
(a) the degrees of $P_{m, n}(f, z)$ and $Q_{m, n}(f, z)$ are exactly n and m, respectively, and
(b) The FNS $Q_{m, n} f-P_{m, n}$ has the form

$$
\begin{align*}
& Q_{m, n}(f, z) f(z)-P_{m, n}(f, z) \\
& \quad=b_{m+n+1} \omega_{m+n+1}(z)+b_{m+n+2} \omega_{m+n+2}(z)+\cdots \tag{3.2}
\end{align*}
$$

where $b_{m+n+1} \neq 0$.
The FNS $f(z)$ and the Newton-Pade table of $f(z)$ are both said to be normal if all Newton-Padé approximants $R_{m, n}(f, z)$ are normal.

We note that the above definition of normality reduces to that for Padé approximants in the case when all $\beta_{i}=0$. We also mention that if the Newton-Padé approximant $R_{m, n}(f, z)$ is normal, then it satisfies the interpolation property

$$
\begin{equation*}
R_{m, n}\left(f, \beta_{i}\right)=f\left(\beta_{i}\right), \quad i=1,2, \ldots, m+n+1 \tag{3.3}
\end{equation*}
$$

Equation (3.3) can be seen from (3.2) and the fact that $Q_{m, n}\left(f, \beta_{i}\right) \neq 0$
$i=1,2, \ldots, m+n+1$ (which is a consequence of (3.2) and the property that $Q_{m, n}$ and $P_{m, n}$ are relatively prime polynomials).

The following theorem gives necessary and sufficient conditions for normality of a Newton-Padé approximant.

ThEOREM 3. Let $f(z)=\sum_{0}^{\infty} a_{k} \omega_{k}(z)$ be a FNS with interpolation points $\left\{\beta_{i}\right\}$, let m and n be nonnegative integers and let

$$
D_{-1, \nu}(f)=1, \quad D_{\mu, \nu}(f)=\left|\begin{array}{cccc}
A_{\nu, 0} & A_{\nu, 1} & \ldots & A_{\nu, \mu} \tag{3.4}\\
A_{\nu+1.0} & A_{\nu+1,1} & \ldots & A_{\nu+1, \mu} \\
\ldots & \ldots & \ldots & \ldots \\
A_{\nu+\mu, 0} & A_{\nu+\mu, 1} & \ldots & A_{\nu+\mu, \mu}
\end{array}\right|,
$$

$$
\mu, v=0,1,2, \ldots
$$

where the $A_{k, p}$ are defined by (2.4b). Then the $[m, n]$ Newton-Pade approximant $R_{m, n}(f, z)=P_{m, n}(f, z) / Q_{m, n}(f, z)\left(P_{m, n}, Q_{m, n}\right.$ relatively prime $)$ is normal if and only if the determinants $D_{m-1, n+1}(f), D_{m, n+1}(f)$, and $D_{m, n}(f)$ are all nonzero and the FNS $Q_{m, n} f-P_{m, n}$ has the form

$$
\begin{align*}
& Q_{m, n}(f, z) f(z)-P_{m, n}(f, z) \\
& \quad=b_{m+n+1} \omega_{m+n+1}(z)+b_{m+n+2} \omega_{m+n+2}(z)+\cdots \tag{3.5}
\end{align*}
$$

Theorem 3 is an immediate consequence of the following two lemmas.

Lemma 4. Let $f(z)=\sum_{0}^{\infty} a_{k} \omega_{k}(z)$ be a FNS with interpolation points $\left\{\beta_{i}\right\}$, and let m and n be nonnegative integers. Then:
(A) A nontrivial solution, $c_{0}, \ldots, c_{n}, d_{0}, \ldots, d_{m}$, to the system of equations (2.11) is determined uniquely (up to a nonzero multiplicative constant) if and only if

$$
\begin{equation*}
D_{m, n}(f) \neq 0 \tag{3.6}
\end{equation*}
$$

(B) If $c_{n}, d_{0}, \ldots, d_{m}$ satisfy (2.11), then
$d_{j} \cdot D_{m, n}(f)=\left|\begin{array}{ccccccc}A_{n, 0} & \cdots & A_{n, j-1} & c_{n} & A_{n, j+1} & \cdots & A_{n, m} \\ A_{n+1,0} & \cdots & A_{n+1, j-1} & 0 & A_{n+1, j+1} & \cdots & A_{n+1 . m} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ A_{n+m, 0} & \cdots & A_{n+m, j-1} & 0 & A_{n+m, j+1} & \cdots & A_{n+m, m}\end{array}\right|$,
$j=0,1, \ldots, m$.
(C) In particular, if $D_{m, n}(f) \neq 0$ and d_{0}, \ldots, d_{m} satisfy (2.11), then we can choose $c_{n}=1$ and obtain

$$
d_{j}=\frac{\left|\begin{array}{ccccccc}
A_{n, 0} & \cdots & A_{n, j-1} & 1 & A_{n, j+1} & \cdots & A_{n, m} \tag{3.8}\\
A_{n+1,0} & \cdots & A_{n+1, j-1} & 0 & A_{n+1, j+1} & \cdots & A_{n+1, m} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
A_{n+m, 0} & \cdots & A_{n+m, i-1} & 0 & A_{n+m, j+1} & \cdots & A_{n+m, m}
\end{array}\right|}{D_{m, n}(f)},
$$

$j=0,1, \ldots, m$.
Remark. Lemma 4 is an immediate consequence of Cramer's rule [16]. We note that the existence of a nontrivial solution to (2.11) was asserted by Theorem 2. Lemma 4(A) merely gives a necessary and sufficient condition for the uniqueness of such a solution.

Lemma 5. Let $f(z)=\sum_{0}^{\infty} a_{k} \omega_{k}(z)$ be a FNS with interpolation points $\left\{\beta_{i}\right\}$, let m and n be nonnegative integers and suppose that the $[m, n]$ Newton-Padé approximant $R_{m, n}(f, z)=P_{m, n}(f, z) / Q_{m, n}(f, z)\left(P_{m, n}, Q_{m, n}\right.$ relatively prime $)$ is such that the FNS $Q_{m, n} f-P_{m, n}$ has the form (3.5). Then
(A) $D_{m, n}(f) \neq 0$ if and only if degree $P_{m, n}=n$.
(B) If $D_{m, n}(f) \neq 0$, then $D_{m-1, n+1}(f) \neq 0$ if and only if degree $Q_{m, n}=m$.
(C) If $D_{m, n}(f) \neq 0$ and $D_{m-1, n+1}(f) \neq 0$, then $D_{m, n+1}(f) \neq 0$ if and only if (in (3.5)) $b_{m+n+1} \neq 0$.

Proof. It follows from Theorem 2 that $\left(P_{m, n}, Q_{m, n}\right)$ is the unique (up to equivalence \sim) rational expression of type $[m, n]$ such that the FNS $Q_{m, n} f-P_{m, n}$ has the form (3.5). Letting $P_{m, n}(f, z)=c_{0} \omega_{0}(z)+c_{1} \omega_{1}(z)+$ $\cdots+c_{n} \omega_{n}(z)$ and $Q_{m . n}(f, z)=d_{0}+d_{1} z+\cdots+d_{m} z^{m}$, we see from Lemma 4(A) that ($P_{m, n}, Q_{m, n}$) is determined uniquely (up to equality) if and only if $D_{m, n}(f) \neq 0$.

Now to prove (A), note that if $D_{m, n}(f) \neq 0$ and $c_{n}=0$, then it follows from (3.7) that $d_{j}=0, j=0,1, \ldots, m$, which contradicts the fact that $Q_{m, n}(f, z)$ is not identically zero. Thus $c_{n} \neq 0$ if $D_{m . n}(f) \neq 0$. Conversely, suppose $D_{m, n}(f)=0$. Then by Theorem 2 and Lemma $4(\mathrm{~A})$, there exists a rational expression $\left(u^{*}, v^{*}\right)$ of type $[m, n]$ such that FNS $v^{*} f-u^{*}$ has the form

$$
\begin{equation*}
v^{*}(z) f(z)-u^{*}(z)=d_{m+n+1} \omega_{m+n+1}(z)+d_{m+n+2} \omega_{m+n+2}(z)+\cdots \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(u^{*}, v^{*}\right) \neq\left(P_{m, n}, Q_{m, n}\right) . \tag{3.10}
\end{equation*}
$$

But from Theorem 2

$$
\begin{equation*}
\left(u^{*}, v^{*}\right) \sim\left(P_{m, n}, Q_{m, n}\right) . \tag{3.11}
\end{equation*}
$$

Since $P_{n n, n}$ and $Q_{m, n}$ are relatively prime, we conclude from (3.9) and (3.11) that $\operatorname{deg} P_{m, n}<\operatorname{deg} u^{*} \leqslant n$. Hence $c_{n}=0$, which proves (A).

To prove (B), suppose that $D_{m, n}(f) \neq 0$. Then by (3.7)

$$
\begin{equation*}
d_{m}=\left((-1)^{m} c_{n} D_{m-1, n+1}(f) / D_{m, n}(f)\right), \tag{3.12}
\end{equation*}
$$

from which (B) readily follows.
To prove (C) we note that the coefficient b_{m+n+1} in (3.5) is given (from (2.6)) by

$$
\begin{equation*}
b_{m+n+1}=\sum_{j=0}^{m} d_{j} A_{m+n+1, j} . \tag{3.13}
\end{equation*}
$$

Applying Cramer's rule to the system of equations consisting of (2.11b) and (3.13) gives

$$
\begin{equation*}
d_{m} \cdot D_{m, n+1}(f)=b_{n+m+1} \cdot D_{m-1, n+1}(f) . \tag{3.14}
\end{equation*}
$$

If $D_{m, n}(f) \neq 0$ and $D_{m-1, n+1}(f) \neq 0$, then (by (B)) $d_{m} \neq 0$ and hence $\bar{b}_{m+n+1} \neq 0$ if and only if $D_{m, n+1}(f) \neq 0$, as asserted by (C). This completes the proof.
To achieve Lemma 5 for the Newton-Padé table we employed the ideas outlined by Perron [14] and Gragg [4] for the Padé table. Both Perron and Gragg, however, make use of the fact that the Pade table has a "square" structure in the following sense: if $R(z)$ is any approximant in some given Pade table then there exist integers $r, m, n \geqslant 0$ such that $R(z)$ belongs to exactly the $(r+1)^{2}$ entries $[m+k, n+j](j, k=0, \ldots, r)$ of the table. That is, $R(z)$ occupies exactly the $r+1$ by $r+1$ square in the table having vertices $[m, n],[m+r, n],[m, n+r]$, and $[m+r, n+r]$. This "square" structure is not, in general, present in the Newton-Padé table as illustrated by the following:

Example 1. Let $f(z)=\sum_{k=0}^{\infty} a_{k} \omega_{k}(z)$ be a FNS where

$$
\begin{aligned}
& a_{0}=a_{1}=a_{3}=a_{5}=a_{6}=a_{7}=1 ; \\
& a_{2}=0 ; \\
& a_{4}=-1 ; \quad \text { and } \\
& a_{k}=0, \quad \text { for } k \geqslant 8 . \\
& \beta_{k}=k, \quad \text { for } k \geqslant 1 .
\end{aligned}
$$

TABLE I
Upper Left 4×3 Block of Newton-Padé Table for Function Considered in Example 1

0	1	2	3	4	
0	1	z	z	$z^{3}-6 z^{2}+12 z-6$	$-30+62 z-41 z^{2}+11 z^{3}-z^{4}$
1	$\frac{2}{3-z}$	$\frac{z(z-4)}{z-4} \sim z$	$\frac{z(z-4)}{z-4} \sim z$	$\frac{\left(z^{3}-6 z^{2}+12 z-6\right)(5-z)}{5-z}$	
2	$\frac{6-4 z}{7-6 z+z^{2}}$	$\frac{z(z-4)}{z-4} \sim z$	$\frac{z(z-4)(z-6)}{(z-4)(z-6)}$	$\frac{150-402 z+240 z^{2}-58 z^{3}+5 z^{4}}{-11+6 z-z^{2}}$	
3	$\frac{30}{67-52 z+17 z^{2}-2 z^{9}} \frac{10(z-3)}{\left(z^{2}-8 z+17\right)(z-3)} \sim \frac{10}{z^{2}-8 z+17} \frac{30-42 z+8 z^{2}}{19-33 z+11 z^{2}-z^{3}} \frac{150+438 z-230 z^{2}+27 z^{3}}{743-435 z+82 z^{2}-5 z^{3}} \frac{117 z^{4}-147 z^{3}+6628 z^{2}-11334 z+285}{-5539+2733 z-431 z^{2}+22 z^{3}}$				

Then

$$
\begin{aligned}
f(z)= & 1+(z-1)+(z-1)(z-2)(z-3)-(z-1)(z-2)(z-3)(z-4) \\
& +\prod_{k=1}^{5}(z-k)+\prod_{k=1}^{6}(z-k)+\prod_{k=1}^{7}(z-k),
\end{aligned}
$$

and

$$
\begin{aligned}
& f\left(\beta_{1}\right)=f(1)=1 \\
& f\left(\beta_{2}\right)=f(2)=2 \\
& f\left(\beta_{3}\right)=f(3)=3 \\
& f\left(\beta_{4}\right)=f(4)=10, \\
& f\left(\beta_{5}\right)=f(5)=5 \\
& f\left(\beta_{6}\right)=f(6)=66 \\
& f\left(\beta_{7}\right)=f(7)=1027 .
\end{aligned}
$$

Table I shows the upper left 4×3 block of the Newton-Padé table for $f(z)$ and clearly illustrates that those entries occupied by the rational function $R(z)=z$ do not form a "square."

We finally note that $R_{0,2}(f, z), R_{1,1}(f, z), R_{1,2}(f, z), R_{1,3}(f, z), R_{2,2}(f, z)$, $R_{2,3}(f, z)$, and $R_{3,1}(f, z)$ are not normal since they do not satisfy condition (a) of Definition 5. It is easy to verify (by Definition 5) that $R_{1,0}(f, z)=2 /(3-z)$ is normal (a fact which we will use later in the remarks following Definition 9 in Section 5).

4. Continutry

Some sufficient conditions to ensure that an $[m, n]$ Newton-Padé approximant $R_{m, n}(f, z)$ varies continuously with the Newton coefficients a_{k} and interpolation points β_{i} are given in Section 4.2. First however, in Section 4.1 we summarize properties of FNS expansions that are used in both Sections 4.2 and 5. References are given for the proofs of Theorems 6 and 7.

4.1. Newton Series Expansions

Defintion 6. Let $\beta_{1}, \beta_{2}, \ldots, \beta_{p}$ be a (finite) sequence of complex numbers, in which there are exactly q distinct numbers, denoted by $\beta_{1}{ }^{\prime}$, $\beta_{2}{ }^{\prime}, \ldots, \beta_{q}{ }^{\prime}$. For each i such that $1 \leqslant i \leqslant q$, let ξ_{i} denote the number of occurrences of β_{i}^{\prime} in the sequence $\beta_{1}, \ldots, \beta_{p}$. If $f(z)$ and $g(z)$, are functions. holomorphic at each of the points $\beta_{1}{ }^{\prime}, \ldots, \beta_{q}{ }^{\prime}$, then $g(z)$ is said to interpolate to $f(z)$ in the sequence of points $\beta_{1}, \beta_{2}, \ldots, \beta_{y}$, if

$$
\begin{equation*}
g^{(j)}\left(\beta_{i}{ }^{\prime}\right)=f^{(j)}\left(\beta_{i}{ }^{\prime}\right), \quad j=0,1, \ldots, \xi_{i}, \quad i=1,2, \ldots, q \tag{4.1}
\end{equation*}
$$

Theorem 6. Let $\left\{\beta_{i}\right\}$ be a sequence of complex numbers (not necessarily distinct) and let $f(z)$ be a function that is analytic at each $\beta_{i}, i=1,2,3, \ldots$. Then:
(A) For each $n=0,1,2, \ldots$, there exists a unique polynomial $s_{n}(f ; z)$, of degree not greater than n, which interpolates to $f(z)$ in the sequence of points $\beta_{1}, \beta_{2}, \ldots, \beta_{n+1}$ [3, Chap. II, Example 6].
(B) $I f$

$$
\begin{equation*}
s_{n}(f ; z)=\sum_{k=0}^{n} a_{k}^{(n)} \omega_{k}(z) \tag{4.2}
\end{equation*}
$$

where $\omega_{0}(z)=1$ and for $k \geqslant 1, \omega_{k}(z)=\prod_{1}^{k}\left(z-\beta_{i}\right)$, then

$$
\begin{equation*}
a_{k}^{(n)}=a_{k}^{(n+m)}, \quad k=0,1, \ldots, n ; \quad n=0,1,2, \ldots ; \quad m=0,1,2, \ldots \tag{4.3}
\end{equation*}
$$

[18, pp. 52-54].
Definition 7. Let $\left\{\beta_{2}\right\}$ be a sequence of complex numbers (not necessarily distinct) and let $f(z)$ be a function analytic at each $\beta_{i}, i=1,2,3, \ldots$. If, for each $n=0,1,2, \ldots, a_{n}=a_{n}^{(n)}$, the coefficient of $\omega_{n}(z)$ in (4.2), then

$$
\begin{equation*}
\sum_{k=0}^{\infty} a_{k} \omega_{k}(z) \tag{4.4}
\end{equation*}
$$

where $\omega_{0}(z)=1$ and $\omega_{k}(z)=\prod_{1}^{k}\left(z-\beta_{i}\right)$, is called the formal Newton series expansion (FNSE) of $f(z)$ with respect to the sequence of interpolation points $\left\{\beta_{i}\right\}$.

In practice, the coefficients a_{k} in (4.4) can be computed by means of divided difference methods (see for example [7, Chap. 2]). We note that the nth partial sum of (4.4) is simply the polynomial $s_{n}(f ; z)$ of degree not greater than n which interpolates to f in the finite sequence $\beta_{1}, \beta_{2}, \ldots, \beta_{n+1}$. Thus the formal Newton series expansion of a function $f(z)$ always converges to $f(z)$ at the points β_{i}.

The following theorem gives sufficient conditions to ensure Cauchy integral representations of the coefficients a_{k}, partial sums $s_{n}(f ; z)$ and remainders $f(z)-s_{n}(f ; z)$ for a formal Newton series expansion of a holomorphic function $f(z)$.

Theorem 7 (Walsh [18, pp. 52-54]). Let $\left\{\beta_{i}\right\}$ be a bounded sequence of complex numbers (not necessarily distinct) and let $f(z)$ be a function holomorphic within and on a scroc C whose interior $\operatorname{Int}(C)$ contains all $\beta_{i}, i=1,2,3, \ldots$. For each $n=0,1,2, \ldots$, let a_{n} and $s_{n}(f ; z)$ denote the nth coefficient and partial
sum, in the formal Newton series expansion of $f(z)$ with respect to the sequence $\left\{\beta_{i}\right\}$. Then, for $n=0,1,2, \ldots$,

$$
\begin{align*}
a_{n} & =\frac{1}{2 \pi i} \int_{C} \frac{f(\xi)}{\omega_{n+1}(\xi)} d \xi \tag{4.5a}\\
s_{n}(f ; z) & =\frac{1}{2 \pi i} \int_{C} \frac{\omega_{n+1}(\xi)-\omega_{n+1}(z)}{\omega_{n+1}(\xi)(\xi-z)} f(\xi) d \xi, \quad z \in \operatorname{Int}(C), \tag{4.5b}\\
f(z)-s_{n}(f ; z) & =\frac{1}{2 \pi i} \int_{C} \frac{\omega_{n+1}(z) f(\xi)}{\omega_{n+1}(\xi)(\xi-z)} d \xi, \tag{4.5c}
\end{align*} \quad z \in \operatorname{Int}(C) .
$$

Remark. We note that if $f(z)$ satisfies the conditions of Theorem 7 and hence has a FNS expansion $\sum_{k=0}^{\infty} a_{k} \omega_{k}(z)$ then the coefficients of the FNS expansion $\sum_{z=0}^{\infty} r_{k} \omega_{k}(z)$ of $h(z)=f(z) /(z-c)$ given by Theorem 7 (where c is not interior to the scroc C) are the same as the FNS $\sum_{k=0}^{\infty} \eta_{k} \omega_{k}(z)$ for $h(z)$ given by the division algorithm of Definition 2 d . To see this, note that

$$
\begin{aligned}
r_{0} & =\frac{1}{2 \pi i} \int_{c} \frac{h(t)}{t-\beta_{1}} d t=h\left(\beta_{1}\right), \quad \text { by the Cauchy Integral formula } \\
& =\frac{f\left(\beta_{1}\right)}{\beta_{1}-c}=\frac{a_{0}}{\beta_{1}-c}=\eta_{0}, \text { by }(2.3)
\end{aligned}
$$

and that for any $k>0$.

$$
\begin{aligned}
\frac{a_{k}-r_{k-1}}{\beta_{k+1}-c} & =\frac{1}{2 \pi i} \int_{C}\left[\frac{f(t)}{\omega_{k+1}(t)}-\frac{f(t)}{(t-c) \omega_{k}(t)}\right] d t \\
& =\frac{1}{2 \pi i} \int_{C}\left[\frac{f(t)\left(\beta_{k+1}-c\right)}{(t-c) \omega_{k+1}(t)} d t\right] /\left(\beta_{k+1}-c\right) \\
& =\frac{1}{2 \pi i} \int_{C} \frac{h(t)}{\omega_{k+1}(t)} d t=r_{k}, \quad \text { by Theorem } 7 .
\end{aligned}
$$

Thus, the r_{k} satisfy the same recursion formula (2.3) as the η_{k}, and since $r_{0}=\eta_{0}$ the claim is established.

4.2. Continuity Theorems

This section contains two results on continuity of the $[m, n]$ Newton-Pade approximant considered as a function of the Newton coefficients $\left\{a_{k}\right\}$ and interpolation points $\left\{\beta_{i}\right\}$. The first result (Theorem 8) shows that the [m, n] approximants of two formal Newton series will be arbitrarily close (uniformly on certain compact sets) if the Newton coefficients and interpolation points are sufficiently close. A similar conclusion is asserted by the second result
(Theorem 9), but there it is assumed that the formal Newton series are both expansions of the same analytic function so that the Newton coefficients vary continuously with the interpolation points.

Theorem 8. Let $f(z)=\sum_{0}^{\infty} a_{k} \omega_{k}(z)$ be a FNS with sequence of interpolation points $\left\{\beta_{i}\right\}$, and let m and n be (fixed) nonnegative integers such that

$$
\begin{equation*}
D_{n, n}(f) \neq 0 \tag{4.6}
\end{equation*}
$$

where $D_{m, n}(f)$ is the determinant defined by (3.4). Let $R_{m, n}(f, z)=$ $P_{m . n}(f, z) / Q_{m, n}(f, z)$ denote the $[m, n]$ Newton-Padé approximant of f ($P_{m, n}$ and $Q_{m, n}$ relatively prime). Then
(A) For each positive number ϵ and compact set E such that E contains no poles of $R_{m, n}(f, z)$ and

$$
\begin{equation*}
\beta_{\imath} \notin E, \quad i=1,2, \ldots, m+n+1, \tag{4.7}
\end{equation*}
$$

there exists $\delta>0$ such that

$$
\begin{equation*}
\max _{z \in E}\left|R_{m, n}(f, z)-R_{m, n}\left(f^{*}, z\right)\right|<\epsilon \tag{4.8}
\end{equation*}
$$

when

$$
\begin{equation*}
\max _{0 \leqslant k \leqslant m+n}\left|a_{k}-a_{k}^{*}\right|<\delta \text { and } \max _{1 \leqslant i \leqslant m+n+1}\left|\beta_{i}-\beta_{i}^{*}\right|<\delta, \tag{4.9}
\end{equation*}
$$

where f^{*} is a FNS with coefficients $\left\{a_{k}{ }^{*}\right\}$ and interpolation points $\left\{\beta_{i}{ }^{*}\right\}$.
(B) If, in addition, the FNS $Q_{m, n} f-P_{m, n}$ has the form

$$
\begin{align*}
& Q_{m, n}(f, z) f(z)-P_{m, n}(f, z) \\
& \quad=b_{m+n+1} \omega_{m+n+1}(z)+b_{m+n+2} \omega_{m+n+2}(z)+\cdots \tag{4.10}
\end{align*}
$$

then statement (A) holds without the requirement (4.7).
Proof. Let E be a compact set such that E contains no poles of $R_{m, n}(f, z)$ and (4.7) holds, and let $\epsilon>0$ be given. By Theorem $2(B)$, there exists a unique (up to equivalence \sim) rational expression (u, v) of type [m, n] such that FNS $v f-u$ has the form

$$
\begin{equation*}
v(z) f(z)-u(z)=b_{m+n+1} \omega_{m+n+1}(z)+b_{m+n+2} \omega_{m+n+2}(z)+\cdots \tag{4.11}
\end{equation*}
$$

where $\omega_{k}(z)=\prod_{1}^{k}\left(z-\beta_{i}\right)$. By Definition 4, $(u, v) \sim\left(P_{m, n}, Q_{m, n}\right)$. If $u(z)=c_{0}+c_{1} \omega_{1}(z)+\cdots+c_{n} \omega_{n}(z)$ and $v(z)=d_{0}+d_{1} z+\cdots+d_{m} z$, then it follows from Lemma $4(\mathrm{~A})$ (since $D_{m, n}(f) \neq 0$) that the coefficients c_{0}, \ldots, c_{n} and d_{0}, \ldots, d_{m} are uniquely determined up to a nonzero multiplicative constant; by Lemma $4(C)$ we can choose $c_{n}=1$, so that the
coefficients d_{0}, \ldots, d_{m} are given by (3.8) and the coefficients c_{0}, \ldots, c_{n-1} are then given by (2.11a).

Our first task will be to show that E contains no zeros of $v(z)$. To see this, suppose that c is a zero of $v(z)$ but $c \neq \beta_{i}, i=1,2, \ldots, m+n+1$. To show that c is a pole of $R_{m, n}(f, z)$, it suffices to prove that $u(c) \neq 0$, since $(u, v) \sim\left(P_{m, n}, Q_{m, n}\right)$. Assume $u(c)=0$, and define polynomials \hat{u} and \hat{v} by $u(z)=(z-c) \hat{u}(z)$ and $v(z)=(z-c) \hat{v}(z)$. Clearly, $\hat{v} f-\hat{u}$ is a FNS with interpolation points $\left\{\beta_{i}\right\}$; since $c \neq \beta_{i}, i=1,2, \ldots, m+n+1$, it follows from (4.11) and the relations (2.3b) that $\hat{v}-\hat{u}$ has the form

$$
\begin{equation*}
\hat{v}(z) f(z)-\hat{u}(z)=\hat{b}_{m+n+1} \omega_{m+n+1}(z)+\hat{b}_{m+n-2} \omega_{m+n+2}(z)+\cdots \tag{4.12}
\end{equation*}
$$

But $(\hat{u}, \hat{v}) \neq(u, v)$. This contradicts the assertion of Lemma 4(A) (stated above) that (u, v) is determined uniquely (up to equality). Hence our assumption $u(c)=0$ is false, and we conclude that E contains no zeros of $v(z)$.

Now consider another FNS f^{*} with coefficients $\left\{a_{k}{ }^{*}\right\}$ and interpolation points $\left\{\beta_{2}^{*}\right\}$ and let $D_{m, n}\left(f^{*}\right)$ denote the determinant for f^{*} corresponding to $D_{m, n}(f)$ (see (3.4)). Since $D_{m, n}\left(f^{*}\right)$ is a continuous function of $a_{0}{ }^{*}$, $a_{1}{ }^{*}, \ldots, a_{m+n}^{*}$ and $\beta_{1}{ }^{*}, \beta_{2}{ }^{*}, \ldots, \beta_{m+n+1}^{*}$, there exists $\delta_{1}>0$ such that $D_{m i n}\left(f^{*}\right) \neq 0$ if $\max _{0 \leqslant k \leqslant m+n}\left|a_{k}-a_{k}{ }^{*}\right|<\delta_{1}$ and $\max _{1 \leqslant 2 \leqslant m+n+1}\left|\beta_{i}-\beta_{i}{ }^{*}\right|<$ δ_{1}. For each such f^{*}, it follows from Lemma $4(\mathrm{~A})$ that there exists a unique (up to equality) rational expression $\left(u^{*}, v^{*}\right)$ of type $[m, n]$ such that the FNS $v^{*} f-u^{*}$ has the form

$$
\begin{equation*}
v^{*}(z) f^{*}(z)-u^{*}(z)=b_{m+n+1}^{*} \omega_{m+n+1}^{*}(z)+b_{m-n+2}^{*} \omega_{m+n+2}^{*}(z)+\cdots, \tag{4.13}
\end{equation*}
$$

where $\omega_{k}^{*}(z)=\prod_{1}^{k}\left(z-\beta_{i}^{*}\right)$. Thus if $u^{*}(z)=c_{0}^{*}+c_{1}{ }^{*} \omega_{1}^{*}(z)+\cdots+$ $c_{n}{ }^{*} \omega_{n}{ }^{*}(z)$ and $v^{*}(z)=d_{0}{ }^{*}+d_{1}{ }^{*} z+\cdots+d_{m}{ }^{*} z^{m}$, the coefficients $c_{z}{ }^{*}$ and $d_{k}{ }^{*}$ are determined uniquely up to a nonzero multiplicative constant and we may take $c_{n}{ }^{*}=1$. Hence the coefficients $d_{0}{ }^{*}, \ldots, d_{m}{ }^{*}$ and $c_{0}{ }^{*}, \ldots, c_{n-1}^{*}$ are given by (3.8) and (2.11a), respectively, with $*$ inserted as superscripts throughout. By the continuity of the relations defined by (3.8) and (2.11a), it follows that given $\eta>0$, there exists $\delta_{2}>0$ such that

$$
\begin{equation*}
\max _{0 \leqslant k \leqslant n}\left|c_{k}-c_{k}^{*}\right|<\eta \text { and } \max _{0 \leqslant k \leqslant m}\left|d_{k}-d_{k}^{*}\right|<\eta \tag{4.14}
\end{equation*}
$$

provided

$$
\begin{equation*}
\max _{0 \leqslant k \leqslant m+n}\left|a_{k}-a_{k}^{*}\right|<\delta_{2} \text { and } \max _{1 \leqslant i \leqslant m+n+1}\left|\beta_{\imath}-\beta_{\imath}^{*}\right|<\delta_{2} \tag{4.15}
\end{equation*}
$$

Since for $z \in E, R_{m, n}(f, z)=u(z) / v(z)$ and $R_{m, n}\left(f^{*}, z\right)=u^{*}(z) / v^{*}(z)$, one can show that there exists $\eta>0$ such that (4.8) holds provided (4.14) and
(4.15) hold. Thus we have shown that if $\delta=\min \left[\delta_{1}, \delta_{2}\right]$, then (4.8) is implied by (4.9), which proves (A).

To prove statement (B), we note that (4.6) and (4.10) imply (by Lemma $4(\mathrm{~A}))$ that $(u, v)=\left(P_{m, n}, Q_{m, n}\right)$ and hence a zero of $v(z)$ cannot be in E (even if (4.7) does not hold). The remainder of the proof of (B) is identical to that of (A) and this completes the proof of Theorem 8.

Theorem 9. Let $f(z)$ bé a function holomorphic within and on a scroc C. Let $\left\{\beta_{i}\right\}$ be a sequence of complex numbers each contained in $\operatorname{Int}(C)$ and let $\sum_{0}^{\infty} a_{k j} \omega_{y_{k}}(z)$ denote the formal Newton series expansion of $f(z)$ with respect to $\left\{\beta_{i}\right\}$. Let m and n be (fixed) nonnegative integers such that

$$
\begin{equation*}
D_{m, n}(f) \neq 0 \tag{4.16}
\end{equation*}
$$

where $D_{m, n}(f)$ is defined by (3.4) and let $R_{m, n}(f, z)=P_{m, n}(f, z) / Q_{m, n}(f, z)$ denote the $[m, n]$ Newton-Padé approximant of $\sum a_{k} \omega_{k}(z)\left(P_{m, n}\right.$ and $Q_{m, n}$ relatively prime). Then
(A) For each $\epsilon>0$ and each compact set E such that E contains no poles of $R_{m, n}(f, z)$ and

$$
\begin{equation*}
\beta_{i} \notin E, \quad i=1,2, \ldots, m+n+1 \tag{4.17}
\end{equation*}
$$

there exists $\delta>0$ such that if $\left\{\beta_{i}{ }^{*}\right\}$ is another sequence of complex numbers contained in $\operatorname{Int}(C)$ and if $R_{m, n}^{*}(f, z)$ denotes the $[m, n]$ Newton-Padé approximant of the FNS expansion of $f(z)$ with respect to $\left\{\beta_{i} *\right\}$, then

$$
\begin{equation*}
\max _{z \in E}\left|R_{m, n}(f, z)-R_{m, n}^{*}(f, z)\right|<\epsilon \tag{4.18}
\end{equation*}
$$

provided

$$
\begin{equation*}
\max _{1 \leqslant i \leqslant m+n+1}\left|\beta_{i}-\beta_{i}^{*}\right|<\delta . \tag{4.19}
\end{equation*}
$$

(B) If, in addition, the FNS $Q_{m, n} f-P_{m, n}$ has the form (4.10), then statement (A) holds without the requirement (4.17).

Proof. The coefficients $\left\{a_{k}\right\}$ in the FNS expansion of $f(z)$ with respect to the sequence $\left\{\beta_{i}\right\}$ are given by (4.5a). If $\left\{a_{k}{ }^{*}\right\}$ denotes the coefficients in the FNS expansion of $f(z)$ with respect to another sequence $\left\{\beta_{i}{ }^{*}\right\}$, then by (4.5a)

$$
\left|a_{k}-a_{k}^{*}\right|=(1 / 2 \pi)\left|\int_{C}\left(f(\xi) / \omega_{k+1}(\xi)\right) d \xi-\int_{C}\left(f(\xi) / \omega_{k+1}^{*}(\xi)\right) d \xi\right|
$$

where $\omega_{k}(\xi)=\prod_{i=1}^{T i}\left(\xi-\beta_{i}\right)$ and $\omega_{k}^{*}(\xi)=\prod_{i=1}^{i k}\left(\xi-\beta_{i}^{*}\right)$. Thus for each $k=0,1,2, \ldots$, there exists a constant M_{k} such that

$$
\left|a_{k}-a_{k}^{*}\right| \leqslant M_{k} \max _{\xi \in C}\left|\omega_{k+1}(\xi)-\omega_{k+1}^{*}(\xi)\right|
$$

Therefore, $\max _{0 \leqslant k \leqslant m+n}\left|a_{k}-a_{k}{ }^{*}\right|$ can be made arbitrarily small, if $\max _{1 \leqslant i \leqslant m+n+1}\left|\beta_{i}-\beta_{i}{ }^{*}\right|$ is sufficiently small. As a consequence, Theorem 9 follows immediately from Theorem 8.

Example 2. The following example shows that the assumption that $D_{m, n}(f)$ be nonzero is not sufficient for the conclusion of Theorem 8(A) and that the added assumption (4.7) is needed: Let the FNS $f(z)=$ $\sum_{k=0}^{\infty} a_{k} \omega_{k_{k}}(z)$ be chosen so that

$$
a_{0}=a_{2}=1 ; \quad a_{1}=0 ; \quad \text { and } \quad a_{k}=0 \quad \text { for } k \geqslant 3
$$

and so that

$$
\beta_{k}=k, \quad \text { for all } k=1,2,3, \ldots
$$

Then

$$
f(z)=1+(z-1)(z-2)
$$

Since $(z-3) f(z)-(z-3)=\omega_{3}(z)$, then $R_{1,1}(f, z) \sim(z-3) /(z-3)$. That is,

$$
R_{1,1}(f, z) \equiv 1
$$

Choose the FNS $f^{*}(z)=\sum_{k=0}^{\infty} a_{k}{ }^{*} \omega_{k z}^{*}(z)$ so that

$$
a_{k}^{*}=a_{k} \quad \text { for all } k \neq 1 \quad \text { and } \quad a_{1} * \neq 0
$$

and

$$
\beta_{k}{ }^{*}=\beta_{k} \quad \text { for all } k
$$

Then

$$
f^{*}(z)=1+a_{1}^{*}(z-1)+(z-1)(z-2)
$$

It is easy to show that

$$
R_{1,1}\left(f^{*}, z\right)=\left(3+\left(a_{1}^{*}\right)^{2}(z-1)+a_{1}^{*} z-z\right) /\left(a_{1}^{*}+3-z\right)
$$

Now, $R_{1,1}(f, 3)=1$ and (since $\left.a_{1} * \neq 0\right) R_{1,1}\left(f^{*}, 3\right)=2 a_{1}^{*}+3$. Thus we see that as $a_{1}{ }^{*} \rightarrow a_{1}=0$ through nonzero values, $R_{1,1}\left(f^{*}, 3\right) \rightarrow 3 \neq$ $R_{1,1}(f, 3)$, which implies $\max _{z \in E}\left|R_{1,1}\left(f^{*}, z\right)-R_{1,1}(f, z)\right|$ does not approach zero as $\max _{0 \leqslant k \leqslant m+n}\left|a_{k}-a_{k}^{*}\right| \rightarrow 0$ and $\max _{1 \leqslant j \leqslant m+n+1}\left|\beta_{j}-\beta_{j}^{*}\right| \rightarrow 0$ on any compact set E which contains $\beta_{3}=3$. Finally, we note that

$$
D_{1,1}(f)=\left|\begin{array}{ll}
A_{1,0} & A_{1,1} \\
A_{2,0} & A_{2,1}
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & a_{1} \beta_{2}+a_{0} \\
a_{2} & a_{2} \beta_{3}+a_{1}
\end{array}\right|=\left|\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right|=-1
$$

so that, indeed, $D_{1,1}(f) \neq 0$.

5. Convergence of Newton-Padé Approximants

Two convergence theorems are given for Newton-Padé approximants. The first result (Theorem 10) shows that under certain conditions uniform boundedness of the approximants is necessary and sufficient for uniform convergence. The second result (Theorem 12) gives sufficient conditions to ensure that uniformly convergent sequences of Newton-Padé approximants have as their limit the value of the expanded function. Before stating these theorems it is convenient to introduce the following:

Definition 8. An ordered triple $\langle W, U, V\rangle$ of subsets of \mathbb{C} is said to have property $\mathscr{P}(\delta, \Delta)$ if U and V are bounded and simply connected, with boundaries denoted by C_{U} and C_{V}, respectively, such that:
(a) $W \subseteq U \subseteq V$,
(b) $C_{U} \cap C_{V}=\varnothing$,
(c) C_{V} is a scroc,
(d) $\delta=\min \left[|v-w|: v \in C_{V}, w \in W\right]$, and
(e) $\Delta=\max \left[|u-w|: u \in C_{V}, w \in W\right]$.

DEFINITION 9. Let $f(z)=\sum_{0}^{\infty} a_{k} \omega_{k}(z)$ be a FNS with interpolation points $\left\{\beta_{\imath}\right\}$ and let m and n be nonnegative integers. The [m, n] Newton-Padé approximant $\quad R_{m, n}(f, z)=P_{m, n}(f, z) / Q_{m, n}(f, z)$, (with $P_{m, n}$ and $Q_{m, n}$ relatively prime) is said to be regular if the FNS $Q_{m, n} f-P_{m, n}$ has the form

$$
\begin{equation*}
Q_{m, n}(f, z) f(z)-P_{m, n}(f, z)=b_{n+1} \omega_{n+1}(z)+b_{n+2} \omega_{n+2}(z)+\cdots \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{m, n}\left(f, \beta_{i}\right) \neq 0, \quad i=n+2, n+3, n+4, \ldots \tag{5.2}
\end{equation*}
$$

Remarks. If an $[m, n]$ Newton-Padé approximant $R_{m, n}(f, z)$ is regular, then it follows from (5.1), (5.2), and Theorem 1(D) that $f(z)-R_{m, n}(f, z)$ is a FNS of the form

$$
f(z)-R_{m, n}(f, z)=b_{n+1}^{\prime} \omega_{n+1}(z)+b_{n+2}^{\prime} \omega_{n+2}(z)+\cdots
$$

We note that the Pade approximants are always regular. However, even a normal Newton-Padé approximant may fail to be regular. An example of this can be obtained from Table 1 of Section 3 where we showed (in Example 1) that $R_{1,0}(f, z)=2 /(3-z)$ is normal. If $R_{1,0}(f, z)$ were also regular, then Definition 9 would imply there exists a FNS expression $\sum_{k=0}^{\infty} b_{k} \omega_{k}(z)$ for $R_{1,0}(f, z)$; and hence that $R_{1,0}\left(f, \beta_{3}\right)=R_{1.0}(f, 3)=$
$b_{0}+2 b_{1}+2 b_{2}$. But this cannot happen since Table I clearly shows $R_{1,0}(f, z)$ has a pole at $\beta_{3}=3$.

On the other hand, if there are at most a finite number of distinct interpolation points β_{i} and they are contained in the $\operatorname{set}\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m+n+1}\right\}$, then normality of $R_{m, n}(f, z)$ implies regularity. Thus we see the possible lack of regularity of Newton-Padé approximants comes about as a result of freedom in choosing the β_{ι}.

Theorem 10. Let $\left\{m_{v}\right\}$ and $\left\{n_{\nu}\right\}$ be sequences of nonnegative integers such that for some ϵ with $0<\epsilon<1$,

$$
\begin{equation*}
\sum_{\nu=0}^{\infty} \epsilon^{n_{\nu}}<\infty \tag{5.3}
\end{equation*}
$$

For each $v=0,1,2, \ldots$, let $R_{\nu}(f, z)$ denote the $\left[m_{v}, n_{\nu}\right]$ Newton-Pade approximant to $a \operatorname{FNS} f(z)=\sum a_{k} \omega_{k}(z)$ with a bounded sequence of interpolation points $\left\{\beta_{i}\right\}$. Let $\bar{\beta}$ denote the closure of the set $\left\{\beta_{2}: i=1,2,3, \ldots\right\}$ and let $\langle\bar{\beta}, U, V\rangle$ be a triple of subsets of \mathbb{C} with property $\mathscr{P}(\delta, \Delta)$ such that $\Delta / \delta \leqslant \epsilon$ and such that U is an open connected set. Let D be an open connected set containing \bar{V}. If there exists a number ν_{0} such that, for $\nu \geqslant \nu_{0}, R_{v}(f, z)$ is regular, then a necessary and sufficient condition for $\left\{R_{v}(f, z)\right\}$ to be uniformly convergent on each compact set of D is that $\left\{R_{\nu}(f, z)\right\}$ is uniformly, bounded on each compact subset of D for sufficiently large ν.

When $\beta_{i}=0, i=1,2,3, \ldots$, Theorem 10 reduces to a result for Padé approximants given earlier by [10, Theorem 1]. In the proof of Theorem 10 we make use of the following lemma; its proof can be found in [3, p. 81].

Lemma 11. Let $\left\{\beta_{i}\right\}$ be a bounded sequence of complex numbers (not necessarily distinct) and let $\bar{\beta}$ denote the closure of the set $\left\{\beta_{i}: \dot{i}=1,2,3, \ldots\right\}$. Let $\langle\bar{\beta}, U, V\rangle$ be a triple of subsets of \mathbb{C} having property $\mathscr{P}(\delta, \Delta)$, with $\Delta / \delta<1$. If $f(z)$ is holomorphic within and on the boundary C_{V} of V, then $\left\{s_{n}(f ; z)\right\}$ converges uniformly on U to $f(z)$.

Here $s_{n}(f ; z)$ denotes the nth partial sum of the FNS expansion of $f(z)$ with respect to the points $\left\{\beta_{i}\right\}$.

Proof of Theorem 10. Suppose first that $\left\{R_{\nu}(f, z)\right\}$ is uniformly convergent on each compact subset of D. Let K be a given compact subset of D. Then there exists N such that for $\nu \geqslant N, R_{v}(f, z)$ has no poles in K (hence is holomorphic in K). It follows that $g(z)=\lim R_{v}(f, z)$ is defined and holomorphic in D. Moreover, there exists N_{I} such that

$$
\begin{equation*}
\left\|R_{\nu}(f, z)\right\|_{K}-\|g(z)\|_{K} \leqslant\left\|R_{\nu}(f, z)-g(z)\right\|_{K} \leqslant 1, \quad \text { for } \nu \geqslant N_{1} \tag{5.4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\|R_{\nu}(f, z)\right\|_{K} \leqslant\|g(z)\|_{K}+1, \quad \text { for } \quad \nu \geqslant N_{1}, \tag{5.5}
\end{equation*}
$$

implying that for sufficiently large $\nu,\left\{R_{\nu}(f, z)\right\}$ is uniformly bounded on K.
Conversely, suppose that $\left\{R_{\nu}(f, z)\right\}$ is uniformly bounded on each compact subset of D for sufficiently large v. Let K be an arbitrary compact subset of D. Clearly, there exists an open connected set K_{0} containing \bar{V} such that the closure \bar{K}_{0} is compact and such that $K \subseteq K_{0} \subseteq \bar{K}_{0} \subseteq D$. By hypothesis there exist positive numbers N and M such that

$$
\begin{equation*}
\left|R_{v}(f, z)\right| \leqslant M, \quad \text { for } \quad v \geqslant N \text { and } z \in \bar{K}_{0} \tag{5.6}
\end{equation*}
$$

Thus for $\nu \geqslant N, R_{\nu}(f, z)$ is holomorphic on \bar{K}_{0} and hence, by Theorem 6 and Lemma 11, the FNS expansion of $R_{\nu}(f, z)$,

$$
\begin{equation*}
R_{v}(f, z)=\sum_{k=0}^{\infty} \gamma_{k}^{(v)} \omega_{k k}(z), \quad \nu \geqslant N \tag{5.7}
\end{equation*}
$$

with respect to the points $\left\{\beta_{i}\right\}$, converges uniformly to $R_{\nu}(f, z)$ on U. We write $R_{\nu}(f, z)=P_{\nu}(f, z) / Q_{\nu}(f, z)$ where P_{ν} and Q_{ν} are relatively prime polynomials. Then since $R_{\nu}(f, z)$ is regular, the FNS $Q_{\nu}(f, z) f(z)-P_{p}(f, z)$ can be divided by $Q_{\nu}(f, z)$ to give a FNS of the form

$$
\begin{equation*}
f(z)-R_{\nu}(f, z)=b_{n_{\nu}+1}^{\prime} \omega_{n_{\nu}+1}(z)+b_{n_{\nu}+2}^{\prime} \omega_{n_{\nu}+2}(z)+\cdots \tag{5.8}
\end{equation*}
$$

(see Definition 2d and Theorem 1(D)).
In view of the remark immediately following Theorem 7 and (5.8), we can conclude that

$$
\begin{equation*}
\gamma_{k}^{(v)}=a_{k}, \quad k=0,1, \ldots, n_{\nu}, \nu \geqslant N . \tag{5.9}
\end{equation*}
$$

For all $\xi \in C_{V}$ and $i \geqslant 1,\left|\xi-\beta_{i}\right| \geqslant \delta$ and hence

$$
\begin{equation*}
\left|\omega_{k}(\xi)\right|=\left|\prod_{i=1}^{k}\left(\xi-\beta_{i}\right)\right| \geqslant \delta^{k}, \text { for } \xi \in C_{V}, k=1,2,3, \ldots \tag{5.10}
\end{equation*}
$$

Hence by Theorem 7

$$
\begin{equation*}
\left|\gamma_{k}^{(v)}\right|=\left|(1 / 2 \pi i) \int_{C_{n}}\left(R_{\nu}(\xi) / \omega_{k+1}(\xi)\right) d \xi\right| \leqslant\left(M^{*} / \delta^{k}\right), \quad \text { for } \nu \geqslant N \tag{5.11}
\end{equation*}
$$

where $M^{*}=M \cdot\left(\right.$ length $\left.C_{V}\right) / 2 \pi \delta$. Defining

$$
N_{\nu}=\max \left[n_{\nu}, n_{\nu+1}\right]
$$

we obtain for all $\nu \geqslant N+1$ and $z \in U$,

$$
\begin{aligned}
\left|R_{\nu+1}(f, z)-R_{\nu}(f, z)\right| & =\left|\sum_{k=N_{v}+1}^{\infty}\left(\gamma_{k}^{(v+1)}-\gamma_{k}^{(\nu)}\right) \omega_{k}(z)\right| \\
& \leqslant \sum_{k=N_{\nu}+1}^{\infty}\left|\gamma_{k}^{(\nu+1)}-\gamma_{k}^{(\nu)}\right| \cdot\left|\omega_{k}(z)\right| \\
& \leqslant 2 M^{*} \sum_{k=N_{\nu}+1}^{\infty}(\Delta / \delta)^{\bar{k}}=\left(2 M^{*} /(\delta-\Delta)\right)(\Delta / \delta)^{N_{\nu}+1}
\end{aligned}
$$

since for all $z \in U,\left|z-\beta_{i}\right|<\Delta$ and hence $\left|\omega_{k}(z)\right|<\Delta^{7}$. Since by hypothesis $\Delta / \delta \leqslant \epsilon$, it follows that

$$
\begin{equation*}
R_{N+1}(f, z)+\sum_{\nu \equiv N+1}^{\infty}\left(R_{\nu+1}(f, z)-R_{\nu}(f, z)\right) \tag{5.12}
\end{equation*}
$$

converges uniformly on U provided

$$
\begin{equation*}
\sum_{\nu=0}^{\infty} \epsilon^{N_{\nu}}<\infty . \tag{5.13}
\end{equation*}
$$

But (5.13) is implied by (5.3) and the inequality

$$
\sum_{\nu=0}^{q} \epsilon^{N_{\nu}} \leqslant\left(1+\sum_{\nu=0}^{q} \epsilon^{n_{\nu}}\right)\left(1+\sum_{\nu=0}^{p} \epsilon^{n_{\nu}+1}\right), \quad q \geqslant 0
$$

We have shown that $\left\{R_{\nu}(f, z)\right\}$ is uniformly convergent on U. To complete the proof it suffices to apply Stieltjes' theorem [9, p. 251]: A uniformly bounded sequence of functions holomorphic in a domain K_{0} converges uniformly on K_{0} provided the sequence converges uniformly on some subdomain of K_{0}.

Theorem 12. Let $\left\{m_{\nu}\right\}$ and $\left\{n_{\nu}\right\}$ be sequences of nonnegative integers such that $\left\{n_{v}\right\}$ tends to infinity. For each $v=0,1,2, \ldots$, let $R_{v}(f, z)$ denote the $\left[m_{\nu}, n_{\nu}\right]$ Newton-Padé approximant to a FNS $f(z)=\sum_{0}^{\infty} a_{k} \omega_{k}(z)$ with a bounded sequence of interpolation points $\left\{\beta_{i}\right\}$. Let $\bar{\beta}$ denote the closure of the set $\left\{\beta_{i}: i=1,2,3, \ldots\right\}$ and let $\langle\bar{\beta}, V, U\rangle$ be a triple of subsets of \mathbb{C} having property $\mathscr{P}(\delta, \Delta)$ such that $\Delta / \delta<1$. Let D be an open connected set containing \bar{V}. If there exists a number ν_{0} such that, for $\nu \geqslant \nu_{0}, R_{v}(f, z)$ is regular, and if $\left\{R_{\nu}(f, z)\right\}$ is uniformly convergent on each compact subset of D, then $g(z)=$ $\lim R_{\nu}(f, z)$ is holomorphic on D and the FNS $\sum_{0}^{\infty} a_{k} \omega_{k^{2}}(z)$ converges to $g(z)$ for all $z \in U$.

When $\beta_{i}=0, i=1,2,3, \ldots$, Theorem 12 reduces to a similar result for Padé approximants previously given by [10, Theorem 2].

The following lemma, used in the proof of Theorem 12, is an extension of the Weierstrass Double Series Theorem [8, p. 201].

Lemma 13. Let $\left\{\beta_{i}\right\}$ be a bounded sequence of complex numbers (not necessarily distinct) and let $\bar{\beta}$ denote the closure of the set $\left\{\beta_{i}: i=1,2,3, \ldots\right\}$. Let $\langle\bar{\beta}, U, V\rangle$ be a triple of subsets of \mathbb{C} having property $\mathscr{P}(\delta, \Delta)$ with $\Delta / \delta<1$. Let D be an open connected subset of \mathbb{C} containing \bar{V} and let $\left\{g_{n}(z)\right\}$ be a sequence of functions holomorphic on D. Let

$$
\begin{equation*}
g(z)=\sum_{n=0}^{\infty} g_{n}(z) \tag{5.14}
\end{equation*}
$$

be uniformly convergent on each compact subset of D, so that the function $g(z)$ is holomorphic on D. Let

$$
\begin{align*}
g(z) & =\sum_{k=0}^{\infty} B_{k} \omega_{k}(z) \tag{5.15}\\
g_{n}(z) & =\sum_{k=0}^{\infty} b_{k}^{(n)} \omega_{k}(z), \quad n=0,1,2, \ldots \tag{5.16}
\end{align*}
$$

denote the FNS expansions with respect to $\left\{\beta_{i}\right\}$, each converging uniformly on U to the expanded function (Lemma 11). Then each of the series $\sum_{n=0}^{\infty} b_{i}^{(n)}$, $k=0,1,2, \ldots$ converges and

$$
\begin{equation*}
B_{k}=\sum_{n=0}^{\infty} b_{k}^{(n)}, \quad k=0,1,2, \ldots \tag{5.17}
\end{equation*}
$$

Proof of Lemma 13. By Theorem 7

$$
\begin{equation*}
B_{k}=(1 / 2 \pi i) \int_{C_{V}}\left(g(\xi) / \omega_{k+1}(\xi)\right) d \xi, \quad k=0,1,2, \ldots \tag{5.18a}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{k}^{(n)}=(1 / 2 \pi i) \int_{C_{V}}\left(g_{n}(\xi) / \omega_{k+1}(\xi)\right) d \xi, \quad k=0,1,2, \ldots ; n=0,1,2, \ldots \tag{5.18b}
\end{equation*}
$$

Thus it follows from (5.18) and the uniform convergence of (5.14) that for $k=0,1,2, \ldots$,

$$
\begin{aligned}
B_{k} & =(1 / 2 \pi i) \int_{C_{n}}\left(\sum_{n=0}^{\infty} g_{n}(\xi) / \omega_{k+1}(\xi)\right) d \xi=\sum_{n=0}^{\infty}(1 / 2 \pi i) \int_{C_{n}}\left(g_{n}(\xi) / \omega_{k+1}(\xi)\right) d \xi \\
& =\sum_{n=0}^{\infty} b_{l_{k}}^{(n)}
\end{aligned}
$$

which completes the proof.

Proof of Theorem 12. Let K be an arbitrary compact subset of D. Since $\left\{R_{v}(f, z)\right\}$ converges uniformly on K, there exists ν_{0} such that, for all $\nu \geqslant \nu_{0}$, $R_{\nu}(f, z)$ is holomorphic on K. It follows that $g(z)$ is holomorphic on D.

Let N be chosen such that for $\nu \geqslant N, R_{\nu}(f, z)$ is holomorphic on \bar{V} and $N \geqslant \nu_{0}$. If we define $\left\{g_{v}(z)\right\}$ by

$$
\begin{equation*}
g_{N}(z)=R_{N}(f, z) ; \quad g_{v+1}(z)=R_{v+1}(f, z)-R_{\nu}(f, z), \quad \nu \geqslant N \tag{5.19}
\end{equation*}
$$

then for all $z \in \bar{V}, g(z)$ has the uniformly convergent expansion

$$
g(z)=\sum_{v=n}^{\infty} g_{v}(z)
$$

each term of which is a rational function holomorphic for $z \in \bar{V}$. Each of the functions $g(z), g_{N}(z), g_{N+1}(z), \ldots$ has a FNS expansion with respect to $\left\{\beta_{i}\right\}_{,}$ which we denote (using the notation of (5.7)) by

$$
\begin{align*}
g(z) & =\sum_{k=0}^{\infty} c_{k} \omega_{k}(z) \tag{5.20a}\\
g_{N}(z) & =\sum_{k=0}^{\infty} \gamma_{k}^{(N)} \omega_{k}(z) \tag{5.20b}\\
g_{\nu+1}(z) & =\sum_{k=0}^{\infty}\left(\gamma_{k}^{(v+1)}-\gamma_{k}^{(\nu)}\right) \omega_{k}(z), \quad \nu=N, N+1, \ldots \tag{5.20c}
\end{align*}
$$

where each of the series in (5.20) converges uniformly on U to the expanded function (Lemma 11).

An application of Lemma 13 gives

$$
\begin{equation*}
c_{k}=\gamma_{k}^{(N)}+\sum_{\nu=N}^{\infty}\left(\gamma_{k}^{(\nu+1)}-\gamma_{k}^{(\nu)}\right), \quad k=0,1,2, \ldots \tag{5.21}
\end{equation*}
$$

Since (by hypothesis) $R_{\nu}(f, z)$ is regular for all v such that $\nu \geqslant \nu_{0}$ (and $N \geqslant \nu_{0}$), it follows, from (5.1) and the remark immediately after Theorem 7, that

$$
\begin{equation*}
\gamma_{k}^{(v)}=a_{k}, \quad \text { for } k=0,1, \ldots, n_{\nu}, \nu \geqslant N \tag{5.22}
\end{equation*}
$$

Therefore, since $\left\{n_{\nu}\right\}$ tends to infinity, we obtain from (5.21) and (5.22) that

$$
\begin{equation*}
c_{k}=\lim _{\nu \rightarrow \infty} \gamma_{k}^{(\nu)}=a_{k}, \quad \text { for all } k=0,1,2, \ldots \tag{5.23}
\end{equation*}
$$

Hence $\sum a_{k} \omega_{k}(z)=\sum c_{k} \omega_{k}(z)$ converges uniformly on U to $g(z)$, which completes the proof.

References

1. G. A. Baker, Jr., The theory and application of the Pade approximant method, in "Advances in Theoretical Physics" (K. A. Breukner Ed.), Vol. 1, pp. 1-58. Academic Press, New York 1965.
2. G. A. Baker, Jr. and J. L. Gammel, (Eds.), "The Padé Approximant in Theoretical Physics," pp. 1-35. Academic Press, New York, 1970.
3. P. J. Davis, "Interpolation and Approximation," Blaisdell, New York, 1963.
4. W. B. Gragg, The Padé approximant and its relation to certain algorithms of numerical analysis, SLAM Review 14, No. 1 (1972), 1-62.
5. P. R. Graves-Morris (Ed.), "Padé Approximants," Lectures delivered at a summer school at the University of Kent, The Institute of Physics, London, 1973.
6. P. R. Graves-Morris, (Ed.), "Padé Approximants and Their Applications," Proceedings of a conference held at the University of Kent, July, 1972, Academic Press, New York, 1973.
7. F. B. Hildebrand, "Introduction to Numerical Analysis," McGraw-Hill, New York, 1956.
8. E. Hille, "Analytic Function Theory, Vol. I," 2nd ed., Blaisdell, New York, 1963.
9. E. Hille, "Analytic Function Theory, Vol. H," Blaisdell, New York, 1962.
10. W. B. Jones and W. J. Thron, On convergence of Padé approximants, SIAM J. Math. Analysis 6, No. 1 (1975).
11. W. B. Jones and W. J. Thron, (Eds.), Proceedings of the International Conference on Padé Approximants, Continued Fractions and Related Topics, Rocky Mountain J. 4, No. 2 (1974).
12. J. Karlson, Rational Interpolation with free poles in the complex plane, preprint, University of UMEÅ, Department of Mathematics, No. 6 (1972).
13. J. Meinguet, On the solubility of the Cauchy interpolation problem, in "Approximation Theory" (A. Talbot, Ed.), Academic Press, New York, 1970.
14. O. Perron, "Die Lehre von den Kettenbrüchen," Vol. 2, 3rd ed. B. G. Teubner, Stuttgart, 1957.
15. E. B. Saff, An extension of Montessus de Ballorés theorem on the convergence of the interpolating rational functions, J. Approximation Theory 6, No. 1 (1972), 63-67.
16. G. W. Stewart, "Introduction to Matrix Computations," Academic Press, New York, 1973.
17. H. S. Wall, "Analytic Theory of Continued Fractions," Van Nostrand, New York, 1948.
18. J. L. Walsh, "Interpolation and Approximation by Rational Functions in the Complex Domain," American Mathematical Society Colloquium Publications, Vol. 20, 2nd ed., 1956.
19. J. L. Waish, Padé approximants as limits of rational functions of best approximation, J. Math. Mech. 13, No. 2 (1964), 305-312.
20. J. L. Walsh, Padé approximants as limits of rational functions of best approximation, real domain, J. Approximation Theory 11, No. 3 (1974), 225-230.
21. D. D. Warner, Hermite interpolation with rational functions, Doctoral Dissertation, University of California, San Diego, 1974.
22. D. D. Warner, An extension of Saff's theorem on the convergence of interpolating rational functions, in preparation.

[^0]: * Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. AFOSR-70-1888. The United States Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation hereon.

