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1. INTRODUCTION

A rational function is said to be of type [m, nJ if it can be written in the
form

Corresponding to a given power series

00

P(z) = I akzk
k=O

(aO oF 0) (LI)

and nonnegative integers m and n, there exists a unique rational function

(1.2)

of type [m, nJsatisfying a formal identity
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NEWTON-PADE APPROXIMATION 361

where the Ali; are complex constants (possibly zero). The function rm,n(z)
is called the [m, n] Pade approximant of P(z) and the double infinite array

ro,o rO.1 rO,2
rl,O r1,1 r1,2 (l.4)
r2,0 r2,1 r2,2

is called the Pade table of P(z) [4, 14, 17]. In recent years many applications
ofPade approximants have been found in theoretical physics, chemistry, and
engineering (see, for example, [1, 2, 5, 6, 11n.

Formal Newton series

(1.5)

provide a simple generalization of power series. Their partial sums are
sometimes used to represent interpolation polynomials with interpolation
points {(3;}; the coefficients ali; are then divided differences [7]. In Section 2.2
it is shown that there exists a unique rational function Rm,nCf, z) corre­
sponding to (1.5) in a manner completely analogous to the correspondence
of the [m, n] Pade approximant (1.2) to the power series (Ll). Thus the
function Rm.n(f, z) is a natural generalization of the Pade approximant
rm,n(z) and is referred to herein as the [m, n] Newton-Pade approximant
(Section 2.2). Newton-Pade approximants have recently been studied by
Saff [15], Karlsson [12], and Warner [21,22].

The purpose of the present paper is to develop some additional basic
properties of these rational approximants. The concept of normality is defined
in Section 3 and necessary and sufficient conditions for normality are given
in Theorem 3. In Section 4 we investigate the continuity of an [m, n] Newtoil­
Pade approximant Rm.nCf, z), considered as a function of its Newton coeffi­
cients ao , a1 ,... , am+n and interpolation points (31' (32 ,... , (3m+n+1' The
continuity results (given in Theorems 8 and 9) are in the same spirit as the
following theorem of Walsh [19]: For a given power series (1.1) let rm.nCE, z)
denote the rationalfunction of type [m, n] ofbest approximation tof(z) on the
disk{z: I z I ~ E} in the sense ofTchebycheff(uniform norm).lfthe determinant

an an_1 I
an- m+1

1

an+1 an an- m+2
... I

an+m-l an+m an I
does not vanish, then as E approaches zero, rm,nCE, z) converges to the [m, n]
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Pade approximant rm,nCz) of (1.1), uniformly on compact sets containing no
poles of rm,n(z). Other results of this type have recently been given by
Walsh [20] and Karlsson [12]. In Section 5 we prove two convergence
theorems for Newton-Pade approximants. The first of these (Theorem 10)
gives necessary and sufficient conditions for uniform convergence of certain
sequences of Newton-Pade approximants. The second (Theorem 12) gives
sufficient conditions to ensure that if a sequence of Newton-Pade approx­
imants converges uniformly, then its limit will be equal to the expanded
function. These theorems are analogs to results given by [10] for Pade
approximants; but it is shown by means of an example (preceding
Theorem 10) that complete analogs cannot be found. Other illustrative
examples are given in Sections 3 and 4. In Section I. I we develop certain
algebraic operations for formal Newton series and a brief summary of facts
about Newton series expansions of analytic functions is given in Section 4.1.

The following notations are used in this paper: iffis a function defined on
a set K then IIfllK = sup{! f(z)l: z E K}. We call a simple, closed, rectifiable,
positively oriented curve a "scroc."

2. NEWTON-PADE TABLE

2.1. Formal Newton Series

DEFINITION 1. A formal Newton series (FNS) is an ordered triple
[{an}~, {,8n}~, Un}~], where ao , a1 ,a2 , ... and ,81,,82,,83'''' are complex
numbers (not necessarily distinct) and for each n = 0, 1, 2, ... ,fn is the
polynomial

where

wo(z) = I;

n

fn(z) = I a7<:wiz),
7<:=0

Ie

Wk(Z) = I1 (z - ,8j),
j=l

k = 1,2,3,... ,

(2.1 a)

(2.1 b)

and where z is a complex variable. The an ,,8n , andfn are called, respectively,
the nth Newton coefficient, interpolation point, and partial sum of
[{an}, {,8n}, Un}] and a FNS is said to converge at z if the sequence of partial
sums Un(z)} is convergent. When convergent, the limit limfn(z) is called the
value of the FNS at z. For convenience (when there is no danger ofconfusion)
we may use the symbols f and

oc

fez) = I anwnCz)
n=O

(2.2)
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to represent the FNS [{an}, {f3n}, Un}]. As in many other similar situations
in analysis, the symbols (2.2) are used to denote both the infinite process and
the value of its limit, when it exists.

Remark. We note that a complex constant c and the polynomial
::: == [31WO(Z) + (z - (31) are (finite) formal Newton series. Some arithmetic
operations for formal Newton series are given by the following:

DEFINITION 2. Letj(z) = L~~o akwk(z) and g(z) = L~~o CI.;WI.;(z) be FNS
with interpolation points {[3i} and let c be a complex number. We define:

(a) (f + g)(z) = L:~o (al.; + ck) Wk(Z),

(b) (c' /)(z) = L:~o (c . ak) wiz),

(c) (z· /)(z) = aof31wO(Z) + L;~l (al.;-l + ak,81.;0-1) wJ.;(z),

(d) If c =1= f3" i = 1,2,3,... , thenj(z)j(c - z) = L;=o b"w/,(z),

where

k = 1,2,3,.... (2.3)

Remarks. It is easily verified that if h(z) = L;~o bJ.;Wk(Z) is a FNS given
as in Definition 2d, and (z - c) h(z) is the FNS determined by
Definition 2a,b,c, then

fez) = (z - c) h(z).

Every FNS (2.2) determines a functionJ defined at the points of convergence
of the partial sums (2.la). Clearly, (2.2) always converges (at least) at the
points f31' [32 , f33 ,.... Conversely, in Section 4 it will be seen that under
certain conditions a functionJwill determine a FNS expansion with a given
sequence of interpolation points {f3;}.

If ak = (') for k ?= n + 1, then (2.3) is a finite (or terminating) FNS and
defines a polynomial in z of degree not greater than n. Conversely. as an
immediate consequence of Definition 2, every polynomiai of degree n
determines a unique (finite) FNS with the given sequence of interpolation
points {f3,}. From Definition 2 it is also clear that the product (multiplication)
of a FNS by a polynomial is a well-defined FNS (with the same sequence of
interpolation points); the quotient (division) of a FNS by a polynomial is
a well-defined FNS (with the same sequence of interpolation points) provided
the (divisor) polynomial does not vanish at any of the interpolation points.
The following theorem provides further useful information concerning
multiplication of a FNS by polynomials.
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THEOREM 1. Let fez) = 2::=0 akwk(z) be a FNS with interpolation
points {Pn}. Ifm, v and f.L are positive integers, let K:';) denote the sum of all
products consisting of m factors of the P/s with v - f.L + 1 ~ i ~ v
(K:';) = 0, ifm < 0 or if f.L < 1; K:,o~ = 1 if f.L )': 1). Then:

(A) For p = 1,2,3,... ,

00

zPf(z) = I Ak,pwiz),
k=O

where (setting ai = 0 for i < 0)

p

A " K(p-j)k,p = L..- ak-j k+l,HI'
j=O

00

v(z) fez) = I bkWk(Z),
k=O

where

m

bk = I djAk,j .
j=O

(C) In particular, with the notation of (B),

00

v(z)f(z) = I bkwiz),
k=n+m+1

(2.4a)

(2Ab)

(2.5)

(2.6)

ifai = Ofor i = 0, 1,... , n + m.

(D) If c =1= Pi for i = 1, 2, 3,... , and ak = °for k = 0, 1,..., n + m,
then

00

f(z)/(z - c) = I bkwlz),
k=m+n+1

where the coefficients bk are defined by (2.3).

Proof It can be verified directly from the definition of the KS';), that

K (p-j) + Q K(P-I-j) K(p-j)
k.i I"k+1 k+I.i+1 = k+l,HI, j = 0, 1,... , p; P = 1,2,3,.... (2.7)
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The proof of (A) is by an induction on p. The case p = 1 follows immediately
from Definition 2c. Now assume that (2.4) is true for 1 ~ p < n. Then

a)

znf(z) = z(zn-1f(z)) = z L Ak,n_1W/<:(Z), (by induction hypothesis)
k~O

a)

= Ao,n-1f31wo(z) + L (A/H ,n-1 + f3k+1Ak,n-1) wiz),
1.;=1 (by Definition 2c)

a)

= L Ak,nWk(Z),
k=Q

where the A/c.n satisfy (2.4b), since

Ao,n = Ao,n-1f31 = (aoKi~11») f31 = aoKi~

and, for k = 1,2,3,... ,

n-1 n-1
" K(n-1-j) + f3 '" K(n-1-j) (b . d . h h' )= L, ak-1-j k,j+1 k+1 L, ak-j k+U+1 y m uctron ypot eSIS
j~O j~O

(by 2.7)).

Part (B) is an immediate consequence of (2.4). Part (C) follows from (2.6)
and the fact that A k ,; = 0 provided ai = 0 for all i = k, k - 1, ... , k - j.
Part (D) follows immediately from (2.3) and this completes the proof.

2.2. Newton-Pade Approximants

DEFINITION 3. If u(z) and v(z) are polynomials in z, v(z) not identically
zero, then (u, v) is called a rational expression. Two rational expressions (u, v)
and (u*, v*) are said to be equivalent, denoted by (u, v) ,....", (u*, v*), iff

u(z) v*(z) = u*(z) v(z); (2.8)

they are called equal, denoted by (u, v) = (u*, v*), iff there exists a nonzero
complex number a such that

a . u(z) = u*(z), a . v(z) = v*(z). (2.9)
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A rational expression (u, v) is said to be of type [m, n] iff the degree of u is
at most n and the degree of v is at most m.

Remarks. Equivalence and equality of rational expressions are both
equivalence relations. If two rational expressions are equal, then they are
equivalent, but not conversely. The equivalence class of all rational
expressions equivalent to a given rational expression (u, v) determines a
unique rational function R, represented by

R(z) = p(z)/q(z),

where (p, q) is the rational expression (uniquely determined up to equality)
such that (p, q) rv (u, v) and p and q are relatively prime polynomials.

THEOREM 2. Let fez) = L:~=o akwk(z) be a FNS with interpolation points
{{3i} and let m and n be (fixed) nonnegative integers. Then: (A) If u(z) =

cowo(z) + C1Wl(Z) + .. ,+ cnwn(z) and v(z) = do + d1z + ..,+ dmzm, then a
necessary and sufficient condition that the FNS vf - u be of the form

(2.10)

is that the coefficients Cj and dj satisfy the system of equations

doAo,o + d1Ao,1 + + dmAo.m ~ Co

doAl,O + d1Al,l + + dmAl. m =' Cl
~ . . . .

, .
• • * •

doAn,o + dlAn,l + ... + dmAn,m = Cn

doAn+l.o + d1An+1.1 + ... + dmAn+l.m = 0. . . . .
. . . .

doAn+m,o + d1An+m.1 + ... + dmAn+m,m = 0,

(2. 11a)

(2. 11 b)

where the Ak,p are defined by (2Ab).

(B) There exists a unique (up to equivalence ,-....,) rational expression (u, v)
of type [m, n], such that the FNS v(z)f(z) - u(z) has the form (2.10).

Proof (A) By Theorem 1, letting Ck = 0 for k ;?: n, we obtain

(2.12)

of which (A) is an immediate consequence. To prove (B) we note that (2.1 1b)
is a homogeneous linear system of m equations in (m + 1) unknowns. Hence
there exist do , d1 , ... , dm , not all zero, satisfying (2.1 Ib). Having chosen such
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d;, we choose the c; to satisfy (2.11a) and the resulting rational expression
(u, v) is of type [m, n] and satisfies (2.10). To prove the uniqueness of (u, v),
we let (u*, v*) denote an arbitrary rational expression of type [m, n] such that

By Theorem 1(C), v(v*1 - u*) and v*(vf - u) are both FNS whose first
n + m + 1 coefficients are zero. Hence

v*(z) u(z) - v(z) u*(z)

= v(z)[v*(z)f(z) - u*(z)] - v*(z)[v(z)f(z) - u(z)]

is also a FNS whose first n + m + 1 coefficients vanish. But v*u - vu* is a
polynomial of degree at most n + m and therefore must be identically zero.
Thus (u*, v*) r-J (u, v), which completes the proof.

DEFINITION 4. Let fez) = 2:;=0 akwk(z) be a FNS with interpolation
points {j3;}. Corresponding to each ordered pair of nonnegative integers
(m, n), Theorem 1 asserts the existence of a unique rational function

Rm,n(J, z) = Pm.n(f, z)/Q",.n(f, z), (2.14)

such that (Pm.n ,Qm,n) is a rational expression equivalent to a rational
expression (u, v) of type [m, n] satisfying (2.10). Rm.n(f, z) is called the [m, n]
Newton-Pade approximant of fez). The doubly infinite array

Ro,o(f, z)

R1,oU, z)

R2 .0(f, z)

RO,lU, z)

Ru(f, z)

Ru(f z)

RO,2(f, z)

R1,2(J, z)

R2,2U; z)
(2.15)

is called the Newton-Pade table of fez).

Remark. It is easily seen that in the special case when all j3, are zero, the
FNS fez) = L a1cwiz) reduces to a formal power series L a/ozk and the
Newton-Pade approximant Rm,n(f, z) becomes the [m, n] Pade approximant
of fez). Thus Rm,n(f, z) is a generalization of the [m, n] Pade approximant,
corresponding to (the more general) formal Newton series. This accounts
for our use of the term Newton-Pade approximant.

Let fez) = 2: a1cwk(z) be a FNS with interpolation points {j3i}' Let (u, v)
be the unique (up to equivalence r-J) rational expression of type (m, n] such
that the FNS v(z)f(z) - u(z) has the form (2.10). If v(j3,) = 0 for some i
such that 1 :S:; i :S:; m + n + 1, then (by (2.10)) u(f3,) = V(j3i) = O. Moreover,
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if Rm,n(f, (3i) =F f((3i), for some i such that 1 <: i <: m + n + 1, then it
follows from (2.10) and (Pm,n, Qm,n) !"-' (u, v) (see Definition 4) that
V((3i) = U((3i) = o.

The [m, n] Newton-Pade approximant Rm,n(f, z) may interpolate to fez)
in some, all or none of the points (31' (32 ,... , (3m+n+l . In the special case in
which these points are all distinct, Rm,n(f, z) has the following property:
If R*(z) is a rational function of type [m, n] that interpolates to fez) in at least
the same subset of {(31 , (32 ,... , (3m+n+l} as Rm,n(f, z), then R*(z) = Rm,nCf, z).
Hence Rm,nCf, z) can be referred to as the best interpolating rational function
of fez). When the (3i are not all distinct, the question of interpolation of fez)
by Rm,nCf, z) becomes much more complicated (see, for example, [13]) and
will not be further dealt with here.

3, NORMALITY

DEFINITION 5, Let fez) = L~ akwk(z) be a FNS with interpolation
points {(3i} and let m and n be nonnegative integers. Then the [m, n] Newton­
Pade approximant off

Rm,n(f, z) = (Pm,n(f, z)/Qm,n(f, z)) (Pm,n and Qm,n relatively prime)
(3.1)

is said to be normal if:

(a) the degrees of Pm,n(f, z) and Qm,n(f, z) are exactly nand m,
respectively, and

(b) The FNS Qm,nf - Pm,n has the form

Qm,n(f, z)f(z) - Pm,n(f, z)

= bm+n+lWm+n+l(Z) + bm+n+2Wm+n+2(Z) + ... (3.2)

where bm+n+l =F O.

The FNSf(z) and the Newton-Pade table off(z) are both said to be normal
if all Newton-Pade approximants Rm,n(f, z) are normal.

We note that the above definition of normality reduces to that for Pade
approximants in the case when all (3i = O. We also mention that if the
Newton-Pade approximant Rm,n(f, z) is normal, then it satisfies the inter­
polation property

i = 1, 2,... , m + n + 1. (3.3)

Equation (3.3) can be seen from (3.2) and the fact that Qm,n(f, (3i) =F 0
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i = 1,2,... , m + n + 1 (which is a consequence of (3.2) and the property
that Qm,n and Pm.n are relatively prime polynomials).

The following theorem gives necessary and sufficient conditions for
normality of a Newton-Pade approximant.

THEOREM 3. Letf(z) = L:~ akwiz) be a FNS with interpolation points {{3;},
let m and n be nonnegative integers and let

f-L, v = 0, 1,2,... ,

I
Av,o

Dp, vCf) = Av+l.O

. IA:~~,o

Av.p, I
A v+1 .p, I
A:~_~.u '

(3.4)

where the Ak,p are defined by (2.4b). Then the [m, n] Newton-Pade approximant
Rm,nCf, z) = Pm.n(f, z)/Qm,.lf, z) (Pm,n , Qm,n relatively prime) is normal if
and only if the determinants D",-l.n+l(f), D",.n+l(f), and Dm,n(f) are all
nonzero and the FNS Q""nf P"',n has the form

Qm,n(f, z)f(z) - Pm,n(f, z)

Theorem 3 is an immediate consequence of the following two lemmas.

LEMMA 4. Let fez) = L:~ akwiz) be a FNS with interpolation points {{3,},
and let m and n be nonnegative integers. Then:

(A) A nontrivial solution, Co ,... , Cn , do ,... , dm , to the system of
equations (2.11) is determined uniquely (up to a nonzero multiplicative constant)
if and only if

Dm,n(f) =f= 0.

(B) If Cn , do ,... , dmsatisfy (2.11), then

(3.6)

An,i-l Cn AnJi-l

A,,+l,i-l 0 An+I.i+l

An+m,i-l 0 A n+m ,i+l An-Lm.m

, (3.7)

j = 0,1,... ,111.
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(C) In particular, if Dm,n(f) #- °and do ,... , dm satisfy (2.11), then we
can choose Cn = 1 and obtain

An,f-1
An+l,f-1

1 An,f+1

° An+l,i+1

df = _A....;n-'+-'-'m=,o'---__A....;n.:..:+..:.::m:.:..:,;_-=-:1=--O---;--:;;:A....;n.:..:+..:.::m,-",f-'.+;::..l A-..:.::n-,-'-.:.,m=,=7n_
Dm.n(f)

j= 0, 1, ... ,m.

(3.8)

Remark. Lemma 4 is an immediate consequence of Cramer's rule [16].
We note that the existence of a nontrivial solution to (2.11) was asserted by
Theorem 2. Lemma 4(A) merely gives a necessary and sufficient condition
for the uniqueness of such a solution.

LEMMA 5. Let fez) = L; a/,wk(z) be a FNS with interpolation points {[3i},
let m and n be nonnegative integers and suppose that the [m, n] Newton-Pade
approximant Rm,n(f, z) = Pm,n(f, z)/Qm,n(J, z) (Pm,n, Qm,n relatively prime)
is such that the FNS Qm,nf - Pm,n has the form (3.5). Then

(A) Dm.n(f) #- °if and only if degree Pm,n = n.

(B) If Dm,nCf) #- 0, then Dm-l,n+1(f) #- ° if and only if degree
Qm,n = m.

(C) If Dm,n(f) #- °and Dm- 1,n+1(f) #- 0, then Dm,n+1(f) #- °if and
only if (in (3.5)) brn+n+1 #- 0.

Proof It follows from Theorem 2 that (Pm.n , Qm,n) is the unique (up to
equivalence ,,-,) rational expression of type [m, n] such that the FNS
Qm,nf - Pm,n has the form (3.5). Letting Pm,nCf, z) = cowo(z) + C1W1(Z) +
... + cnwn(z) and Qm.n(f, z) = do + d1z + ... + dmz rn

, we see from
Lemma 4(A) that (Pm.n , Qm,n) is determined uniquely (up to equality) if and
only if Dm.n(f) #- 0.

Now to prove (A), note that if Dm.n(f) #- °and Cn = 0, then it follows
from (3.7) that df = 0, j = 0, 1,... , m, which contradicts the fact that
Qm.n(f, z) is not identically zero. Thus Cn #- °if Dm.nCf) #- 0. Conversely,
suppose Dm,n(f) = 0. Then by Theorem 2 and Lemma 4(A), there exists a
rational expression (u*, v*) of type [m, n] such that FNS v*f - u* has the
form

(3.9)
and

(u*, v*) #- (Pm.n , Qm,n)' (3.10)
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(u*, v*) "" (Pm,n , Qm,n)'

377

(3.11)

Since Pm,n and Qm,n are relatively prime, we conclude from (3.9) and (3,11)
that deg Pm,n < deg u* < n, Hence en = 0, which proves (A).

To prove (B), suppose that Dm,n(J) =1= 0. Then by (3.7)

(3.12)

from which (B) readily follows.
To prove (C) we note that the coefficient bm+n+1 in (3.5) is given (from (2.6»

by

m

bm+n+1 = I dj Am+n+l,j .
j~O

(3.13)

Applying Cramer's rule to the system of equations consisting of (2.11b) and
(3.13) gives

(3.14)

If Dm,n(J) =1= ° and Dm-l.n+1(J) =1= 0, then (by (B» dm =1= 0 and hence
bm+n+l =1= 0 if and only if Dm,n+l(J) =1= 0, as asserted by (C). This completes
the proof.

To achieve Lemma 5 for the Newton-Pade table we employed the ideas
outlined by Perron [14] and Gragg [4] for the Pade table. Both Perron and
Gragg, however, make use of the fact that the Pade table has a "square"
structure in the following sense: if R(z) is any approximant in some given
Pade table then there exist integers r, m, n ?: °such that R(z) belongs to
exactly the (r + 1)2 entries [m + k, n + j] (j, k = 0, ... , r) of the table.
That is, R(z) occupies exactly the r + 1 by r + 1 square in the table having
vertices [In, n], [In + r, n], [m, n + r], and [m +- r, n + r]. This "square"
structure is not, in general, present in the Newton-Pade table as illustrated
by the following:

aO = a1 = G3 = as = a6 = G 7 = 1;

a2 = 0;

a4 = -1;

ak = 0,

fJk = k,

and

for k? 8.

for k?: 1.



TABLE I

Upper Left 4 x 3 Block of Newton-Pade Table for Function Considered in Example 1

V..l
-..l
(Xl

o

2

3

0 1 2 3 4

~
1 z3-6z2+ 12z-6 -30+62z-41z"+ llz3-z4 t'"z z d

()
()

2 z(z-4) z(z-4) (zS-6z2+ 12z-6)(5-z) ....
z ---"-'z ---"-'z >3-z z-4 z-4 5-z z

tl
....

-6 6-4z z(z-4) z(z-4)(z-6) 150-402z+240z2-58zs+5z4 0
Z---"-'z I'll

-11+6z-z2 7-6z+z2 z-4 (z-4)(z-6) -97+35z-3z2 CIl

30 10(z-3) 10 30-42z+8z2 150+438z-230z2+27z3117z4 -147z3+6628z'-11334z+285
"""67=---5=-=Z'-z-+--cl=-7z--c'--Zz3 (z'-8z+ 17)(z-3) "-' z2-8z+ 17 19-33z+11z2-z3 743 -435z+8Zz'-5zs -5539+2733z-431z2+22z'
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Then

fez) = 1 -;- (z - 1) + (z - l)(z - 2)(z - 3) - (z - 1)(z - 2)(z - 3)(z - 4)

567

+ n (z-k) + n (z-k) + n (z-k),
k~l k~l "~l

and

f(~l) = f(l) = 1,

f(~2) = f(2) = 2,

f(~3) = f(3) = 3,

f(~4) = f(4) = 10,

f(~5) = f(5) = 5,

f(~6) = f(6) = 66,

f(~7) = f(7) = 1027.

379

Table I shows the upper left 4 X 3 block of the Newton-Pade table for fez)
and clearly illustrates that those entries occupied by the rational function
R(z) = z do not form a "square."

We finally note that Ro,lf, z), Ru(f, z), R1,2(f, z), R1,3(f, .:), Ru(f, z),
R 2,3(f, z), and R3,1(f, z) are not normal since they do not satisfy condition (a)
of Definition 5. It is easy to verify (by Definition 5) that Ru(f, z) = 2/(3 - z)
IS normal (a fact which we will use later in the remarks following Definition 9
in Section 5).

4. CONTINUITY

Some sufficient conditions to ensure that an [m, n] Newton-Pade
approximant Rm,n(f, z) varies continuously with the Newton coefficients a"
and interpolation points ~i are given in Section 4.2. First however, in
Section 4.1 we summarize properties of FNS expansions that are used in both
Sections 4.2 and 5. References are given for the proofs of Theorems 6 and 7.

4.1. Newton Series Expansions

DEFINITION 6. Let ~l' ~2 , ... , ~p be a (finite) sequence of complex
numbers, in which there are exactly q distinct numbers, denoted by ~1"

~2f, ... , ~qf. For each i such that 1 ~ i ~ q, let ~i denote the number of
occurrences of ~/ in the sequence ~l , , ~p • If fez) and g(z), are functions.
holomorphic at each of the points ~lf, , ~/, then g(z) is said to interpolate to
fez) in the sequence ofpoints ~l' ~2 , , ~p, if

j = 0, 1, ... , g, , i = 1,2,... , q. (4.1)
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THEOREM 6. Let {f3i} be a sequence of complex numbers (not necessarily
distinct) and let fez) be a function that is analytic at each f3i , i = 1,2,3,....
Then:

(A) For each n = 0,1,2,... , there exists a unique polynomial snCf; z),
ofdegree not greater than n, which interpolates to fez) in the sequence ofpoints
f31 , f32 ,"" f3n+1 [3, Chap. II, Example 6].

(B) If
n

sn(f; z) = I aLn)Wk(Z),
k=O

k
where wo(z) = 1 and for k ?' 1, Wk(Z) = III (z - f3i), then

(n) - (n+m) k - 0 1 . - 0 1 2' - 0 1 2ak - ak , -, ,..., n, n - , , ,... , nl - , , , ... ,

[18, pp. 52-54].

(4.2)

(4.3)

DEFINITION 7. Let {f3,} be a sequence of complex numbers (not necessarily
distinct) and let fez) be a function analytic at each f3i' i = 1,2,3,.... If,
for each n = 0, 1,2,... , an = a~n), the coefficient of wn(z) in (4.2), then

(4.4)

where wo(z) = 1 and wiz) = Il: (z - f3i), is caned the formal Newton series
expansion (FNSE) offez) with respect to the sequence of interpolation points
{f3;}.

In practice, the coefficients ak in (4.4) can be computed by means of divided
difference methods (see for example [7, Chap. 2]). We note that the nth
partial sum of (4.4) is simply the polynomial snCf; z) of degree not greater
than n which interpolates tofin the finite sequence f31, f32 '00" f3n+l' Thus the
formal Newton series expansion of a function fez) always converges to fez)
at the points f3i .

The following theorem gives sufficient conditions to ensure Cauchy integral
representations of the coefficients ak, partial sums snCf; z) and remainders
fez) - sn(f; z) for a formal Newton series expansion of a holomorphic
function fez).

THEOREM 7 (Walsh [18, pp. 52-54]). Let {f3i} be a bounded sequence of
complex numbers (not necessarily distinct) and let fez) be afunction holomorphic
within and on a scroc G whose interior Int(G) contains all f3i, i = 1,2,3'00' .
For each n = 0, 1,2,..., let an and sr.(f; z) denote the nth coefficient andpartial
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sum, in the formal N ewtol1 series expansion off(z) with respect to the sequence
{fJ;}. Then,for 11 = 0, 1,2,... ,

(4.5a)

Z E Int (C), (4.5b)

Z Ernt (C). (4.5c)

by the Cauchy Integral formula

Remark. We note that if fez) satisfies the conditions of Theorem 7 and
hence has a FNS expansion L::~o a/cw/c(z) then the coefficients of the FNS
expansion L:~=o r/cwk(z) of h(z) = f(z)/(z - c) given by Theorem 7 (where cis
not interior to the scroc C) are the same as the FNS L::~o TJkWm(Z) for h(z)
given by the division algorithm of Definition 2d. To see this, note that

1 f h(t)
1'0 = -2-: --Q- dt = h(fJ1)'

7Tl c t - t"1

= f(Pl) =~ = by (23)'
fJl - c fJ1 - c TJo , .,

and that for any k > O.

ale - 1'7;;-1

Pk+1 - C

= _1 f [~- f(t) ] dt
27Ti c WkH(t) (t - c) Wk(t)

- 1 f [f(t)(Pk+l - c) ]/ fJ )
- 27Ti c (t - c) WkH(t) dt (k..Ll - C

by Theorem 7.

Thus, the 1'/, satisfy the same recursion formula (2.3) as the 7)k, and since
1'0 = 7)0 the claim is established.

4.2. Continuity Theorems

This section contains two results on continuity of the [m, nJ Newton-Pade
approximant considered as a function of the Newton coefficients {a/c} and
interpolation points {f3i}' The first result (Theorem 8) shows that the [m, n]
approximants of two formal Newton series will be arbitrarily close (uniformly
on certain compact sets) if the Newton coefficients and interpolation points
are sufficiently close. A similar conclusion is asserted by the second result
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(Theorem 9), but there it is assumed that the formal Newton series are both
expansions of the same analytic function so that the Newton coefficients vary
continuously with the interpolation points.

THEOREM 8. Let fez) = L:; akwk(z) be a FNS with sequence of inter­
polation points {f3;}, and let m and n be (fixed) nonnegative integers such that

Dm,n(f) oF 0, (4.6)

where Dm,n(f) is the determinant defined by (3.4). Let Rm.n(f, z) =
Pm.n(f, z)/Qm,n(f, z) denote the [m, n] Newton-Pade approximant of f
(Pm,n and Qm.n relatively prime). Then

(A) For each positive number E and compact set E such that E contains
no poles of Rm.n(f, z) and

13. rt E,

there exists D> 0 such that

i = 1,2,... , m + n + 1, (4.7)

max I Rm n(f, z) - Rm n(f*, z)/ < E,
ZEE' ,

when

(4.8)

where f * is a FNS with coefficients {ak *} and interpolation points {f3i *}.

(B) If, in addition, the FNS Qm,nf - Pm.n has the form

Qm.n(f, z)f(z) - Pm,n(f, z)

= bm+n+1wm+n+1(z) + bm+n+2wm+n+2(z) + "', (4.10)

then statement (A) holds without the requirement (4.7).

Proof. Let E be a compact set such that E contains no poles of Rm.n(f, z)
and (4.7) holds, and let E > 0 be given. By Theorem 2(B), there exists a
unique (up to equivalence ......,) rational expression (u, v) of type [m, n] such
that FNS vf - u has the form

v(z)f(z) - u(z) = bm+n+1wm+n+1(z) + bm+n+2wm+n+2(z) + "', (4.11)

where wiz) = n~ (z - f3i)' By Definition 4, (u, v) ......, (Pm.n ,Qm.n)' If
u(z) = Co + C1Wl(Z) + '" + cnwn(z) and v(z) = do + d1z + ... + dmZ, then
it follows from Lemma 4(A) (since Dm.nCf) oF 0) that the coefficients
Co ,... , Cn and do ,... , dm are uniquely determined up to a nonzero multi­
plicative constant; by Lemma 4(C) we can choose Cn = 1, so that the
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coefficients do ,... , dm are given by (3.8) and the coefficients Co ,... , Cn-l are
then given by (2.11a).

Our first task will be to show that E contains no zeros of v(z). To see this,
suppose that c is a zero of v(z) but c oF f3i , i = 1,2'00" m + n + 1. To show
that c is a pole of Rm.n(f, z), it suffices to prove that u(e) oF 0, since
(u, v) '"'" (Pm,n, Qm,n)' Assume u(c) = 0, and define polynomials it and v by
u(z) = (z - e) it(z) and v(z) = (z - c) v(z). Clearly, vi - a is a FNS with
interpolation points {f3i}; since c oF f3i' i = 1,2,... , m + n + 1, it follows
from (4.11) and the relations (2.3b) that vf - uhas the form

v(z)f(z) - u(z) = bm-Ln+lWm+n+1(Z) + bm+n"-2Wm+n-Lz(z) + .... (4.12)

But (a, v) oF (u, v). This contradicts the assertion of Lemma 4(A) (stated
above) that (u, v) is determined uniquely (up to equality). Hence our
assumption u(c) = a is false, and we conclude that E contains no zeros
of v(z).

Now consider another FNS f* with coefficients {ak *} and interpolation
points {f3,*} and let Dm.n(f*) denote the determinant for f* corresponding
to Dm.n(f) (see (3.4)). Since Dm,n(f*) is a continuous function of ao*,
a1*,00., a~+n and f31*' f32*'00" f3;'+n+l' there exists 81 > 0 such that
Dm.n(f*) oF 0 ifmaxo<k<m+n Iak - ak * I < 01 and max1<,<m-Ln-L1 I f3, - f3i* I <
81 , For each suchf*, it follows from Lemma 4(A) that there exists a unique
(up to equality) rational expression (u*, v*) of type [m, n] such that the
FNS v*f - u* has the form

where Wk*(z) = n~ (z - f3i*)' Thus if u*(z) = Co* + C1*W1*(z) + ... +
Cn*wn*(z) and v*(z) = do* + d1*z + ... + dm*z;n, the coefficients c1/ and
dk * are determined uniquely up to a nonzero multiplicative constant and
we may take Cn * = 1. Hence the coefficients do*, ... , dn.''' and Co*, ... , c:_1 are
given by (3.8) and (2. 11a), respectively, with * inserted as superscripts
throughout. By the continuity of the relations defined by (3.8) and (2.11a),
it follows that given 7] > 0, there exists 02 > 0 such that

(4.14)

provided

Since for z E E, Rm,n(f, z) = u(z)jv(z) and Rm.nCf*, z) = u*(z)jv*(z), one
can show that there exists 7J > 0 such that (4.8) holds provided (4.14) and
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(4.15) hold. Thus we have shown that if 8 = min[81 , 82], then (4.8) is
implied by (4.9), which proves (A).

To prove statement (B), we note that (4.6) and (4.10) imply (by
Lemma 4(A» that (u, v) = (Pm.n , Qm.n) and hence a zero of v(z) cannot be
in E (even if (4.7) does not hold). The remainder of the proof of (B) is
identical to that of (A) and this completes the proof of Theorem 8.

THEOREM 9. Let fez) be a function holomorphic within and on a scroc C.
Let {{3i} be a sequence of complex numbers each contained in Int(C) and let
L; akwk(z) denote the formal Newton series expansion of fez) with respect to
{{3i}' Let m and n be (fixed) nonnegative integers such that

(4.16)

where Dm.n(j) is defined by (3.4) and let Rm.n(J, z) = Pm.n(J, z)/Qm,n(J, z)
denote the [m, n] Newton-Pade approximant of L akwk(z) (Pm.n and Qm.n
relatively prime). Then

(A) For each € > °and each compact set E such that E contains no poles
of Rm.n(J, z) and

{3i 1= E, i = 1,2,... , m + n + 1, (4.17)

there exists 8 > °such that if {{3i*} is another sequence of complex numbers
contained in Int(C) and if R;',n(J, z) denotes the [m, n] Newton-Pade
approximant of the FNS expansion off(z) with respect to {{3i*}' then

provided

l~'}X I Rm,n(J, z) - R;;'.nCJ, z)[ < E,

max I R, - R.* I < 8
l~i~m+n+l f-/t [J~ •

(4.18)

(4.19)

(B) II, in addition, the FNS Qm,nf - Pm,n has the form (4.10), then
statement (A) holds without the requirement (4.17).

Proof The coefficients {ak} in the FNS expansion of fez) with respect to
the sequence {Pi} are given by (4.5a). If {ak *} denotes the coefficients in the
FNS expansion of fez) with respect to another sequence {{3i*}' then by (4.5a)

k <:. kwhere Wk(~) = I1i~l (~ - {3;) and Wk *(s) = ni~l (~ - {3i*)' Thus for each
k = 0, 1,2,... , there exists a constant M k such that
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Therefore, maxo<le<m+n I ale - ale* I can be made arbitrarily small, if
max1<i<m+n+1 I f3i - 13;* I is sufficiently small. As a consequence, Theorem 9
follows immediately from Theorem 8.

EXAMPLE 2. The following example shows that the assumption that
Dm,n(f) be nonzero is not sufficient for the conclusion of Theorem 8(A)
and that the added assumption (4.7) is needed: Let the FNS j(z) =

L:~~o akWle(z) be chosen so that

and so that

and for k?, 3,

Then

f3le = k, for all k = 1,2,3,....

j(z) = 1 + (z - l)(z - 2).

Since (z - 3)j(z) - (z - 3) = W3(Z), then Ru (!'.:;)""'" (z - 3)/(z - 3).
That is,

Rl.l(!, z) - 1.

Choose the FNS j*(z) = L;~O ak *Wk*(z) so that

for all k =F 1 and a1* =F 0,

and

for all k.

Then

j*(z) = 1 + a1*(z - 1) + (z - 1)(z - 2).

rt is easy to show that

Rl,l(f*, z) = (3 + (a1*)2(z - 1) + a1*z - z)j(a1* + 3 - z).

Now, Ru (!' 3) = 1 and (since a1* =F 0) Rl,l(f*, 3) = 2a1* + 3. Thus
we see that as al* ---+ a1 = °through nonzero values, Rl,l(f*, 3) ---+ 3 =?
Rl.1(f, 3), which implies maXzEE I Rl,l(f*, z) - Ru (!' z)1 does not approach
zero as maxO<k<m+n I ale - ale* I ---+ 0 and max1<;:j<m+n+l I f3j - f3j* [ ---+ 0 on
any compact set E which contains f33 = 3. Finally, we note that

so that, indeed, D1.1(f) oF O.
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5. CONVERGENCE OF NEWTON-PADE ApPROXIMANTS

Two convergence theorems are given for Newton-Pade approximants.
The first result (Theorem 10) shows that under certain conditions uniform
boundedness of the approximants is necessary and sufficient for uniform
convergence. The second result (Theorem 12) gives sufficient conditions to
ensure that uniformly convergent sequences of Newton-Pade approximants
have as their limit the value of the expanded function. Before stating these
theorems it is convenient to introduce the following:

DEFINITION 8. An ordered triple <W, U, V) of subsets of iC is said to
have property 9P(o, Ll) if U and V are bounded and simply connected, with
boundaries denoted by C u and C y , respectively, such that:

(a) W~ U~ V,

(b) Cun C y = 0,

(c) C y is a scroc,

(d) o=min[!v-w!:vECy,wEW],and

(e) Ll = max[1 u - W[: UECv , WE W].

DEFINITION 9. Let fez) = L~ akwk(z) be a FNS with interpolation
points {;3,} and let m and n be nonnegative integers. The [m, n] Newton-Pade
approximant Rm.n(f, z) = Pm,n(f, z)/Qm.n(f, z), (with Pm.n and Qm.n
relatively prime) is said to be regular if the FNS Qm.nf - Pm,n has the form

and

i = n + 2, n + 3, n + 4, .... (5.2)

Remarks. If an [m, n] Newton-Pade approximant Rm.n(f, z) is regular,
then it follows from (5.1), (5.2), and Theorem leD) thatf(z) - Rm.n(f, z) is
a FNS of the form

We note that the Pade approximants are always regular. However, even a
normal Newton-Pade approximant may fail to be regular. An example of
this can be obtained from Table 1 of Section 3 where we showed (in
Example 1) that Ru(f, z) = 2/(3 - z) is normal. If Ru(f, z) were also
regular, then Definition 9 would imply there exists a FNS expression
L~~o bkWk(Z) for Rl.oCf, z); and hence that R1.O(f, ;33) = Ru(f, 3) =
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bo -:- 2b1 + 2b2 • But tbis cannot happen since Table I clearly shows
Rl.o(f, z) has a pole at fJ3 = 3.

On the other hand, if there are at most a finite number of distinct inter­
polation points fJi and they are contained in the set {fJl , fJ2 ,..., fJm+n+l}' then
normality of Rm.n(f, z) implies regularity. Thus we see the possible lack of
regularity of Newton-Pade approximants comes about as a result of freedom
in choosing the fJ, .

THEOREM 10. Let {mJ and {nv} be sequences of nonnegative integers such
that for some € with 0 < € < 1,

(5.3)

For each)) = 0, 1,2,... , let RvCf, z) denote the [mv , nvl Newton-Pade approx­
imant to a FNS fez) = L akwiz) with a bounded sequence of interpolation
points {fJi}' Let 13 denote the closure of the set {fJ,: i = 1,2, 3, ...} and let
<13, U, V.' be a triple of subsets of If; with property gJ(o, LI) such that LI/o ::( €

and such that U is an open connected set. Let D be an open connected set
containing V. If there exists a number Vo such that, for)) ;?: ))0' Rv(f, z) is
regular, then a necessary and sufficient condition for {RvCf, z)} to be uniformly
convergent on each compact set of D is that {Rv(f, z)} is uniformly bounded on
each compact subset of D for sufficiently large v.

When fJi = 0, i = 1,2,3,... , Theorem 10 reduces to a result for Pade
approximants given earlier by [10, Theorem 1). In the proof of Theorem 10
we make use of the following lemma; its proof can be found in [3, p. 81].

LEMMA 11. Let {fJi} be a bounded sequence of complex numbers (not
necessarily distinct) and let 13 denote the closure of the set {fJi: i = I, 2, 3, ...}.
Let <13, U. V) be a triple of subsets of If; having property &P(o, LI), with
LI/8 < 1. If fez) is holomorphic within and on the boundary Cv of V, then
{snU; z)} converges uniformly on U to fez).

Here sn(f; z) denotes the nth partial sum of the FNS expansion of fez)
with respect to the points {fJi}'

Proofof Theorem 10. Suppose first that {RvCf, z)} is uniformly convergent
on each compact subset of D. Let K be a given compact subset of D. Then
there exists N such that for v ;?: N, RvCf, z) has no poles in K (hence is
holomorphic in K). It follows that g(z) = lim Rif, z) is defined and
holomorphic in D. Moreover, there exists N 1 such that

II Rv(f, z)IIK - II g(z)IIK ::( qRvCf, z) - g(Z)!IK ::( 1, for v:); N1 .

(5.4)
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Thus

II Rv(f, z)IIK :::;; II g(z)IIK + 1, (5.5)

implying that for sufficiently large v, {RvCf, z)} is uniformly bounded on K.
Conversely, suppose that {Rv(f, z)} is uniformly bounded on each compact

subset of D for sufficiently large v. Let K be an arbitrary compact subset of D.
Clearly, there exists an open connected set Ko containing 17 such that the
closure Ko is compact and such that K k Kok Kok D. By hypothesis there
exist positive numbers Nand M such that

I RvCf, z)1 :::;; M, for v ~ Nand z E Ko . (5.6)

Thus for v ~ N, RvCf, z) is holomorphic on Ko and hence, by Theorem 6 and
Lemma 11, the FNS expansion of Rv(f, z),

00

RvCf, z) = L Y~)Wk(Z),
k~O

v~N (5.7)

with respect to the points {f3i}' converges uniformly to Rv(f, z) on U. We write
RvCf, z) = Pv(f, z)/QvCf, z) where Pvand Qv are relatively prime polynomials.
Then since RvCf, z) is regular, the FNS QvCf, z)f(z) - Pv(f, z) can be divided
by QvCf, z) to give a FNS of the form

(see Definition 2d and Theorem leD)).
In view of the remark immediately following Theorem 7 and (5.8), we can

conclude that

k = 0, 1,... , nv , v ~ N. (5.9)

For all gE Cv and i ~ 1, I g- f3i I ~ 8 and hence

I Wk(g)! = In(g - f3i)j ~ Ok, for gE C v , k = 1,2,3,.... (5.10)
.~1

Hence by Theorem 7

for v ~ N, (5.11)

where M* = M . (length CV)/27T0. Defining
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we obtain for all v ~ N + 1 and Z E U,

!Rv+l(f, z) - Rv(f, z)[ = I f (yr+I) - yr») Wk(Z) I
k~Nv+l I

co

<; I I yr+I) - yt) [ . I Wk(Z) [
k~Nv+l

389

co

<; 2M* L (JjO)k = (2M*j(0 - J))(Jjo)Nv+I,
k~Nv+l

since for an Z E U, [z - (3i [ < J and hence [wk(z)1 < Jk. Since by
hypothesis Jjo <; E, it follows that

co

RN-<-ICf, z) + L (Rv+l(f, z) - RJf, z))
v=N+l

converges uniformly on U provided

But (5.13) is implied by (5.3) and the inequality

(5.12)

(5.13)

q ~O.

We have shown that {RvCf, z)} is uniformly convergent on U. To complete the
proof it suffices to apply Stieltjes' theorem (9, p. 251): A uniformly bounded
sequence offunctions holomorphic in a domain K oconverges uniformly on Ko
provided the sequence converges uniformly on some subdomain of K o .

THEOREM 12. Let {mv} and {nJ be sequences of nonnegative integers such
that {nv} tends to infinity. For each v = 0, 1,2,... , let Rlf, z) denote the
[mv , nJ Newton-Fade approximant to a FNS fez) = L:; akwk(z) with a
bounded sequence of interpolation points {(3i}' Let 13 denote the closure of the
set {(3i: i = 1,2, 3,...} and let <13, V, U) be a triple of subsets of C having
property 9(0, J) such that Jjo < 1. Let D be an open connected set containing
V. If there exists a number Vo such that, for v ~ vo , Rv(f, z) is regular, and if
{Rv(f, z)} is uniformly convergent on each compact subset of D, then g(z) =
lim RJf, z) is holomorphic on D and the FNS 2:: akwl,(z) converges to g(z)
for all Z E U.

When {3, = 0, i = 1,2,3,... , Theorem 12 reduces to a similar result for
Pade approximants previously given by [10, Theorem 2].
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The following lemma, used in the proof of Theorem 12, is an extension of
the Weierstrass Double Series Theorem [8, p. 201].

LEMMA 13. Let {{3i} be a bounded sequence of complex numbers (not
necessarily distinct) and let pdenote the closure of the set {{3i: i = 1,2, 3, ...}.
Let <P, U, V) be a triple ofsubsets of C havingproperty &(8, .J) with .J /8 < 1.
Let D be an open connected subset of C containing V and let {gnCz)} be a
sequence offunctions holomorphic on D. Let

'"g(z) = L gn(z)
n~O

(5.14)

be uniformly convergent on each compact subset ofD, so that the function g(z)
is holomorphic on D. Let

'"
g(z) = L BkWk(Z)

k~O

gn(Z) = f bin)wk(z),
k~O

n = 0, 1,2,... ,

(5.15)

(5.16)

denote the FNS expansions with respect to {{3i}, each converging uniformly on U
to the expanded function (Lemma 11). Then each of the series L:~o bj,n),
k = 0, 1,2'00' converges and

Bk = I bin),
n=O

Proof of Lemma 13. By Theorem 7

k = 0, 1,2,.... (5.17)

and

k = 0, 1,2,... (5.18a)

bin) = (1/27Ti) f (gn(g)/Wk+1(g)) dg, k = 0, 1,2,... ; n = 0, 1,2,.... (5.18b)
Cv

Thus it follows from (5.18) and the uniform convergence of (5.14) that for
k = 0, 1,2,... ,

which completes the proof.
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Proof of Theorem 12. Let K be an arbitrary compact subset of D. Since
{R/f, z)} converges uniformly on K, there exists Va such that, for all v ?: Va,
Rv(f, z) is holomorphic on K. It follows that g(z) is holomorphic on D.

Let N be chosen such that for v ?: N, R/J, z) is holomorphic on V and
N ?: Vo ' If we define {g/z)} by

v;? N,
(5.19)

then for all Z E V, g(z) has the uniformly convergent expansion

00

g(z) = L gv(z),
v=n

each term of which is a rational function holomorphic for z E V. Each of the
functions g(z), gN(Z), gN+1(Z),... has a FNS expansion with respect to {!3i),
which we denote (using the notation of (5.7») by

00

g(z) = L CkWk(Z),
k~O

DO

gN(Z) = L y~N)WlcCz),
k~O

(5.20a)

(5.20b)

v = N, N + 1,... , (5.20c)

where each of the series in (5.20) converges uniformly on U to the expanded
function (Lemma 11).

An application of Lemma 13 gives

Ck = y~N) + f (yt+1) _ y~v),
v~N

k = 0, 1,2,.... (5.21)

Since (by hypothesis) R/f, z) is regular for all v such that v ?: Vo (and
N ?: 1'0), it follows, from (5.1) and the remark immediately after Theorem 7,
that

for k = 0, 1, ... , nv , v ?: N. (5.22)

Therefore, since {nJ tends to infinity, we obtain from (5.21) and (5.22) that

for all k = 0, 1,2,.... (5.23)

Hence L: akwk(z) = L: CkWk(Z) converges uniformly on U to g(z), which
completes the proof.
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